
4/29/08 Lecture 9 outline

• The postulates of quantum mechanics:

1. The state of the system is given by a ket |ψ(t)〉. (Not directly measurable!)

2. Physical observables (except time) are replaced with Hermitian operators. The pos-

sible measured values of any observable A are the various eigenvalues ai of A.

3. The probability of measuring that observable A has value ai in the state |ψ〉 is |〈ai|ψ〉|
2.

4. After measuring that observable A has value ai, the measurement itself radically

affects the system: the wavefunction (immediately) collapses, |ψ〉 → |ai〉.

5. The time evolution of the system (aside from the measurement effect above) is given

by the Schodinger equation: ih̄ d
dt |ψ〉 = H|ψ〉, where H is the Hamiltonian.

• Fits with what we said last time: expectation values in state |ψ〉 by 〈A〉 ≡ 〈ψ|A|ψ〉 =
∑

i ai|〈ai|ψ〉|
2. As mentioned, we can interpret the above as saying that ai are the possible

measured values of observable A, and |〈ai|ψ〉|
2 are the probabilities.

• An example: Schrodinger’s cat. The observable is whether his cat is alive or dead.

The eigenstates are |alive〉 and |dead〉. Before an observer opens the box, the cat can be in

a quantum superposition of being both alive and dead, |cat〉 = c1|alive〉 + c1|dead〉, where

c1 and c2 are complex constants with |c1|
2 + |c2|

2 = 1. Once the box is opened, there is

a probability of |c1|
2 that the observer finds the cat alive (forcing the the wavefunction

collapse to |cat〉 = |alive〉) and a probability of |c2|
2 that the observer finds the cat dead

(forcing the wavefunction collapse to |cat〉 = |dead〉). In a single experiment, the observer

will measure either one outcome or the other. (The mixed nature of the state before

opening the box can only be noticed indirectly.)

• Another example, with polarization sheets. Two orthogonal sheets don’t pass any

light. Putting in an extra middle sheet, oriented at angle θ, allows light to pass. Each sheet

measures the polarization of each photon, and allows photon to pass if its polarization is

along the sheet axis, or not if it is orthogonal. At each stage, each photon is either passed

or absorbed, with probabilities determined by decomposing the photon state into the 2d

basis of either parallel or orthogonal to the polarization axis.

• We will often need to generalize our vector space concepts from spaces with finite

dimension K to infinite dimensional vector spaces. As an example, recall that Fourier’s
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theorem states that any function ψ(x), defined for 0 ≤ x ≤ a, which satisfies ψ(0) =

ψ(a) = 0, can be written as a superposition of the un defined above:

ψ(x) =

∞∑

n=1

cnun(x),

where

cn =

∫ a

0

dx un(x)∗ψ(x).

This can be phrased in Dirac’s notation as expanding a vector in an orthonormal basis:

|ψ〉 =

∞∑

n=0

|n〉〈n|ψ〉

ψ(x) = 〈x|ψ〉 un(x) = 〈x|n〉,

cn = 〈n|ψ〉 =

∫ a

0

dx〈n|x〉〈x|ψ〉.

• Replace physical observables, like x, p, E, etc. with Hermitian operators. The

observed quantities are the eigenvalues. Write e.g.

x̂|x〉 = x|x〉, p̂|p〉 = p|p〉, H|E〉 = E|E〉.

These operators generally act in an infinite dimensional space, the Hilbert space, but this

generally doesn’t complicate things much (from a physicist’s perspective).

• As we have discussed, the operators x̂ and p̂ satisfy [x, p] = ih̄. This is related to

the fact that the momentum p generates translations of x. The fact that they don’t com-

mute means that they don’t have simultaneous eigenvectors, they can’t be simultaneously

diagonalized.

• For any ket |χ〉, we have

〈x|x̂|χ〉 = x〈x|χ〉 and 〈p|p̂|χ〉 = p〈p|χ〉.

〈x|p̂|χ〉 = −ih̄
d

dx
〈x|χ〉 and 〈p|x̂|χ〉 = ih̄

d

dp
〈p|χ〉.

These relations are consistent with [x̂, p̂] = ih̄.

Their separate eigenkets satisfy 〈x′|x〉 = δ(x − x′), and 〈p′|p〉 = δ(p − p′). The

completeness relations are

∫ ∞

−∞
dx|x〉〈x| = 1op

∫ ∞

−∞
dp|p〉〈p| = 1op.
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The relation between these bases is 〈x|p〉 = 1√
2πh̄

eipx/h̄. Note that this satisfies 〈x|p|p〉 =

(−ih̄ d
dx )〈x|p〉 = p〈x|p〉.

• Relate this to what we saw before about Fourier transforms and computing e.g.

〈f(x)〉 and 〈F (p)〉 in position or momentum space. The wavefunction in position space

is ψ(x) = 〈x|ψ〉. The wavefunction in momentum space is φ(p) = 〈p|ψ〉. The Fourier

transform is just a change of basis, using 〈x|p〉.
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