Physics 220, Lecture 1

• Introduction to groups; definition of a group. Symmetry transformations, e.g. V(x) = V(-x) and $G = Z_2$. Applications in physics. Quantum mechanics, atomic and molecular physics, crystals and lattices, high energy theory.

Examples of symmetries: translations, rotations, Lorentz transformations; forces.

Examples of groups: integers under addition; non-zero rationals under multiplication; rotations R_{θ} in a plane; rotations by $2\pi/N$ in a plane; 3d rotations.

- Abelian vs non-Abelian.
- Examples of finite groups Z_N and S_N .

Multiplication tables for Z_3 and S_3 . General properties (e.g. each elements appears once and only once in every row or column).

Example of D_n , e.g. D_2 multiplication table. General D_n has 2n elements, generated by a and b, with $a^n = b^2 = (ab)^2 = e$. D_n can be regarded as a subgroup of O(2), or as a subgroup of SO(3).

- Isomorphism: map $g \to g'$ such that $g'_1 g'_2 = (g_1 g_2)'$.
- Subgroups $H \subset G$. Examples of Z_2 and Z_3 subgroups of S_3 .

• Cayley's theorem: every G with |G| = n is isomorphic to a subgroup of S_n . Proof: order group elements, then multiplication table acts on them as a permutation. E.g. D_2 is isomorphic to S_4 subgroup with elements e, (12)(34), (13)(24), (14)(23).

• Left cosets gH of subgroup $H \subset G$, is the set of all gh for $h \in H$. Note that gH is not a group, it does not contain the identity element. Note also that it contains the same number of elements as H: |gH| = |H|, and none of its elements are in H. Suppose that we take a G element g' that is neither in H nor in gH, then the coset g'H is also of order |H|, and none of its elements are in H or gH. Eventually, each and every G element fits into some coset, so we can decompose $G = H + g_1H + \ldots g_{m-1}H$. Likewise for right cosets. This shows that |H| = |G|/m with m an integer.

Examples for S_3 . Take H_1 the Z_3 cyclic subset. Also consider H_2 one of the Z_2 subsets.