
Physics 220, Lecture 17

? Reference: Georgi chapters 8-9, a bit of 20.

• Last time: classify all simple, compact Lie algebras from their Aji. Require 3

properties: (1) detA 6= 0 (since the simple roots are linearly independent); (2) Aji < 0

for i 6= j; (3) AijAji = 0,1, 2, 3. From these can prove many constraints. For example,

taking α ≡
∑
i αi/|αi| it follows from α2 > 0 that the number of joined nodes is strictly

less than the number of nodes. Therefore, there can’t be any closed loops. Draw all 2

allowed Dynkin diagrams for 3 nodes, following from fact that the sum of angles between

any 3 linearly independent vectors must be < 2π. This same constraint applies to any

subdiagram of a Dynkin diagrams. Another result following from this is that at most 3

lines can connect to any node. We can freely cut apart diagrams and shrink lines to get

subsystems, which must satisfy same constraints. If a node γ connects with two single

lines to two other nodes, α and β (with α · β = 0), then there is another allowed diagram

where γ connects with a double node to α + β. Draw several examples with non-linearly

independent αi, and corresponding µj such that (
∑
j µjαj)

2 = 0 (note each µj is the

average of those at connecting nodes). Draw all allowed Dynkin diagrams.

Extended Dynkin diagrams: include α0, which is the lowest root, as an extra node in

the diagram. Since it’s lowest, α0−αj is not a root, so its q = 0 and thus A0j and Aj0 are

non-positive integers. So satisfy same diagram rules as above, with the exception that there

is a single linear relation among the nodes now. The extended Cartan matrix Ã has rank

r, so det Ã = 0. Draw the extended Dynkin diagrams, with the corresponding α0 = −µhr,
where hr means highest root. So −Aj0 = 2(αj · µhr)/µ2

hr and −A0j = 2(αj · µhr)/α2
j ;

as well soon mention, −A0j are thus the Dynkin coefficients of the highest root. These

coefficients are enough to determine the linear relation of the diagram, which says how the

highest root is written in terms of the other roots.

Draw extended Dynkin diagrams and give α0 = −µmax for the adjoint representation.

The extended Dynkin diagram has another use: deleting any node gives a the Lie

algebra’s maximal regular subalgebras. A subalgebra is regular if its roots and Cartan

generators are part of the original algebra. It’s maximal if it has the same rank as the

original algebra.

• Consider a highest weight µ of a general irrep., i.e. Eαj |µ〉 for all simple roots αj ,

i.e. all pj = 0. So 2αj · µ/α2
j = qj ≥ 0. Here, qj are called the Dynkin coefficients of the

highest weight.
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The fundamental weights, by definition, have 2αj ·µi/α2
j = δij . So the general highest

weight is µ =
∑r
j=1 `jµj , with `j ≥ 0. For a highest weight, `j = qj , and for a general

weight `j = qj − pj for the SU(2)j associated with simple root αj . Start with the highest

weight, and construct the full representation by successive lowering, stopping when qi > 0

is no longer satisfied.

SU(3) example: Taking α1,2 = ( 1
2 ,±
√

3/2), determine µ1,2 = ( 1
2 ,±
√

3/6). Equiva-

lently, get µ1 = (2α1 + α2)/3 and µ2 = (α1 + 2α2)/3 from inverting the Cartan matrix.

A general SU(3) irrep is then given by starting with µmax = `1µ1 + `2µ2, and filling

out the rep by lowering with E−α1
and E−α2

.

The 3 has µmax = µ1 and consists of µ1, µ1 −α1, and µ1 −α2. The 3 has µmax = µ2

and consists of µ2, µ2 − α2, and µ2 − α2 − α1. The adjoint has µmax = µ1 + µ2. The 6

has µmax = 2µ1. The 10 has µmax = 3µ1.

• (Aside on Weyl reflections, in general. In the SU(2)α collection of states |µ +

pα〉 . . . |µ〉 . . . |µ − qα〉, can reflect Lz → −Lz. Corresponds to µ → µ − 2(µ · α)α/α · α,

reflect weights in plane perpendicular to α.)

• Back to SU(3). General µmax = `1µ1 + `2µ2 = ( 1
2 (`1 + `2), (`1 − `2)

√
3
6 ). Draw

weights, with `1 + 1 on the side parallel to α1, and `2 + 1 on the side parallel to α2.

Degeneracy result: Going in from one layer to the next, the degeneracy of the weights

in each layer increases by one each time until one reaches a triangular layer, after which

the degeneracy remains constant. The total dimension of the (`1, `2) irrep is 1
2 (`1 +1)(`2 +

1)(`1 + `2 + 2).

(Aside: for any group, the dimension of irrep with highest weight µ is given by the

Weyl formula: D(µ) =
∏
α>0(µ+ ρ, α)/(ρ, α), where 2ρ =

∑
α>0 α. )

• Tensor methods for SU(3): write the 3 rep of SU(3) as | 12 ,
√

3/6〉 = |1〉,
| − 1

2 ,
√

3/6〉 = |2〉, and |0,−1/
√

3〉 = |3〉. The generators act on these as Ta|i〉 = |j〉[Ta]ji .

Likewise define the 3 with generators −T ∗, so |i〉 states with Ta|i〉 = −|j〉[Ta]ij . Now con-

sider states |v〉 in the (n,m) tensor product, with basis elements |i1...imj1...jn
〉. Invariant tensors,

δij , εijk, εijk. So irreps are the (n,m) tensors with upper and lower indices each separately

symmetrized, and will all traces subtraced out. Use this to get the dimension of the (n,m)

irrep, D(n,m) = B(n,m)−B(n− 1,m− 1), with B(n,m) =

(
n+ 2

2

)(
m+ 2

2

)
.

Useful for understanding tensor products, e.g. uivj and uivj .
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