
5/9/11 Lecture 13 outline

• Continue with black holes! The metric of a neutral, spherically symmetric, non-

rotating black hole is the good old Schwarzschild metric – the only difference is that

Robject ≤ RS = 2GM/c2, so we can consider what happens for r ≤ 2GM/c2. For the sun,

GMsun/c
2 = 1.48km, so the sun would be a black hole if all its mass were compressed

into a radius smaller than ∼ 3km. A planet out at Re could continue rotating around

the black hole on the same orbit as if it were a normal star – things only get bizarre on

distances ∼ Rs = 2GM/c2. As we said last time, Consider null, radial geodesics, see they

have dt/dr = ±(1 − 2GM
r ), so the slope of the light cones in the (r, t) plane close up at

r = RS = 2GM . A light ray just outside that radius seems to never get there, but this is

an illusion of the coordinate system.

Let’s sit well outside RS and drop our friend C3P0 into the horizon, and he’s going

to send messages back to us. Give him ` = 0, so Veff (r) = 1
2ε − εGM/r and ε = 1.

Take him initially at r = r0 at t = t0 Then we have dt
dτ = e(1 − 2GM/r)−1 and dr

dτ =

−
√
e2 − 2Veff (r). At r = r0, dt/dτ = 1/

√
1− v20 = 1. So e = 1 − 2GM/r0. The proper

time to go from r0 to r1 is then

∆τC3P0 =

∫ r1

r1

dr
dr
dτ

= −
∫ r1

r0

dr√
e2 − 1 + 2GM

r

.

The coordinate time is

∆t =

∫ r1

r0

dτ
dt

dτ
= −

∫ r1

r0

dr e

(1− 2GM
r )

√
e2 − 1 + 2GM

r

.

If we started him at r ≈ ∞, then e = 1, and the proper time needed to go from r1 to r2 is

∆τC3PO = −
∫ r2

r1

√
r

2GM
=

2

3
√

2GM
r3/2|r1r2 .

From any finite r1, hit r2 = 2GM in a finite proper time, but coordinate time ∆t→∞ for

r2 → RS . Also, the time that we see for the signals to get to us is ∆τUS → ∞. It seems

to us that he never gets to the horizon.

• From the perspective of someone at r = ∞, the horizon is a special place. But

from the perspective of someone falling in, nothing too special happens there. There are

extreme tidal forces on length scales ∼ GM/c2, but if we imagine a supermassive black

hole, this is a huge length scale and as long as the infalling observer is much smaller than

that scale, they don’t notice anything too special as they get too, and cross the horizon.

1



• One way to see that nothing special happens for a local observer at the horizon is

to compute the curvature there, and show it’s regular there. We’ll do that shortly, after

we return to discussing some math. For now, show it by using better coordinate systems

there.

• Trade the original Schwarzschild time t for v, defined by t = v−r−2M log | r2M −1|,
where we use G = 1 units. Then the metric becomes

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2).

This is the same Schwarzschild geometry, but in the Eddington-Finkelstein coordinates.

The geometry and physics are unchanged, only the names of the coordinates have been

altered to make the physics clearer.

Let’s look at the radial light cones in this coordinate system: −(1− 2M
r )dv2 +2dvdr =

0, so we can take v =constant, i.e. dv
dr = 0, which is an ingoing light ray since increasing t

means decreasing r for v =constant. Another solution is −(1 − 2M
r )dv + 2dr = 0, so this

null curve has dv
dr = 2(1− 2GM

r )−1, or integrating, v − 2(r + 2M log | r2M − 1|) =constant.

This light ray is outgoing for r > 2M , so it’s the other side of the light cone. But for

r < 2M it’s also ingoing. Plot what’s happening in the (r, v) plane. The entire light cone

has been tilted, to point in toward the black hole. Uh-oh... no escape! And the horizon,

r = 2GM , v = constant, is actually a null surface.

• Let t̃ ≡ v − r and plot what happens for a collapsing star in the (r, t̃) plane.
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