
5/18/11 Lecture 16 outline

• Today we’ll discuss curvature. Last time we discussed covariant derivates ∇µ, and

mentioned that the Γ terms are analogous to the Aµ terms in the covariant derivatives

of E& M. In this analogy, note that the field strength Fµν = ∂µAν − ∂νAµ arises as the

commutator of E& M covariant derivatives

[∂µ + iqAµ, ∂ν + iqAν ] = iqFµν .

We’ll see that the curvature is analogous to Fµν , and can be seen in the commutator of

covariant derivatives, [∇µ, ∇ν ] 6= 0.

• Recall first that we can locally, at any point p, always find a coordinate transfor-

mation to “free-falling” coordinates, xµ̂, such that g
µ̂ν̂
|p = η

µ̂ν̂
and ∂

σ̂
g
µ̂ν̂
|p = 0. We can

thus locally make Γµ̂
ν̂σ̂
|p. At that point, the geodesic equation is d2xµ̂

dτ2 |p = 0.

But as we saw before in the example of the metric at the North pole of the earth,

the 2nd order variations of the metric can’t be set to zero. More generally, there is non-

zero curvature at the point p if we can’t set to zero the 2nd derivatives of the metric, or

∂
κ̂
Γµ̂
ρ̂σ̂
|p 6= 0.

• A related way to see curvature, as we mentioned last time, is that parallel trans-

porting vectors gives a vector that depends on the path, e.g. you and your friend’s vectors

are no longer parallel when you parallel transport them from the equator to the North

pole of the earth on different paths. This path dependence is an integrated version of the

local statement that [∇µ, ∇ν ]|p 6= 0 if there is local curvature at p

• Before getting into the details, let’s do some counting of the expansion around the

free-falling coordinates at p:

xµ =
∂xµ

∂xµ̂
|pxµ̂ + 1

2

∂2xµ

∂xµ̂∂xν̂
|pxµ̂xν̂ + . . . ,

and the metric has g = ĝ|p + ∂̂ĝ|px̂+ . . . .

The metric gµν is a symmetric 4 × 4 matrix, so it has 4 × 5/2 = 10 independent

components. We want to pick them to equal η
µ̂ν̂

at p, and that is done at this order by

appropriate choice of the matrix ∂xµ

∂xµ̂
. The matrix ∂xµ

∂xµ̂
is a 4×4 matrix, so 16 components,

that we can use to set g
µ̂ν̂
|p = η

µ̂ν̂
(the extra, unused 6 components = the Lorentz group).

Now ∂σgµν has 40 terms, whereas ∂2xµ

∂xµ̂∂xν̂
also has 40 terms, so this is just right to be

able to set ∂
σ̂
g
µ̂ν̂
|p = 0.

1



At the next order, ∂λ∂σgµν has 100 terms. But ∂3xµ/∂xµ̂∂xν̂∂xσ̂ has 4(4·5·6)/3! = 80

terms. So there are 20 independent components of ∂λ∂σgµν that can’t be set to zero by

any coordinate change. This will correspond to the 20 independent components of the

Riemann curvature tensor.

• Let’s now compute [∇µ, ∇ν ] acting on a vector V ρ, using

∇µ∇νV ρ = ∂µ∇νV ρ − Γλµν ∇λV ρ, ∇νV ρ = ∂νV
ρ + ΓρνκV

κ

and likewise for the term with µ and ν interchanged to get

[∇µ, ∇ν ]V ρ = RρσµνV
σ,

where we used Γλ[µν] = 0 and the Riemann curvature tensor is

Rρσµν ≡ ∂µΓρνσ + ΓρµλΓλνσ − (µ↔ ν).

By this construction, Rρσµν transforms properly like a tensor. It’s straightforward to di-

rectly verify that, under general coordinate transformations, the bad terms all cancel.

• Consider Rρσµν ≡ gρλRλσνν . In local free-fall coordinates at p, get

R
ρ̂σ̂µ̂ν̂

= 1
2

[(
∂
µ̂
∂
σ̂
g
ρ̂ν̂
− (ρ↔ σ)

)
− (µ↔ ν)

]
.

More generally, in any coordinate system, Rρσµν = R[ρσ][µν], antisymmetric in ex-

changing first two indices, or second two indices, Rρσµν = −Rσρµν etc. Also, Rρσµν =

Rµνρσ. Also Rρ[σµν] = 0, R[ρσµν] = 0. So the number of independent components in d

spacetime dimensions is 1
2 ( 1

2 (d(d−1))( 1
2d(d−1)+1)−(d!(d−4)!/4!), where the first factor

accounts for [µν], the second for symmetrizing in ([µν], [ρσ]), and the last for subtracting

R[µνρσ] = 0. The upshot is that Riemann curvature tensor in d spacetime dimensions has

d2(d2 − 1)/12 independent components. In d = 4, this is 20 components, agreeing with

our counting above.

• Can also show ∇[λRρσ]µν = 0, or in other words

∇λRρσµν + ∇ρRσλµν + ∇σRλρµν = 0,

this is a Bianchi identity, related to the Jacobi identity [[∇λ, ∇ρ], ∇σ]+cyclic = 0. These

can be easily shown in the free fall system.

• Define the Ricci tensor Rµν = Rλµλν = Rνµ, and the Ricci scalar R = gµνRµν .
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• Units: if we take [xµ] ∼ L0 and [gµν ] ∼ L2, then it follows immediately from the

definitions in terms of the metric that [Γρµν ] ∼ [Rρσµν ] ∼ [Rµν ] ∼ L0, and [R] ∼ L−2.

• Defining Gµν ≡ Rµν − 1
2gµνR, the Bianchi identity implies that ∇µGµν = 0.

• Example, S2: ds2 = a2(dθ2 + sin2 θdφ2), taking xA=1,2 = (θ, φ). Find Γ1
22 =

− sin θ cos θ, Γ2
12 = Γ2

21 = cot θ, and others are zero. Then R1
212 = sin2 θ, R1212 = a2 sin2 θ,

R11 = 1, R12 = 0, R22 = sin2 θ, and R = 2/a2. “Constant curvature.” Another example,

R3: ds2 = dr2 + r2(dθ2 + sin2 θdφ2) has RABCD = 0, flat.

• If there is curvature, nearby geodesics deviate. Consider a geodesic xµ(λ) and

another xµ + δxµ. Recall that the geodesic equation is D
dλu

µ ≡ uρ∇ρuµ = 0. The

difference, dropping terms higher than linear in δxµ, satisfies

D2

dλ2
δxµ = Rµνρσu

νuρδxσ,

where uµ = dxµ/dλ. The difference δxµ(λ) thus doesn’t stay constant if there is local

curvature, e.g. the curvature due to dark matter can focus initially parallel light rays,

gravitational lensing.

• Next, compute curvature of some of our favorite metrics, e.g. ds2Schwarzshild.
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