
5/23/11 Lecture 17 outline

• Today we’ll discuss Einsein’s equations! Building blocks:

1. In the Newtonian limit, we should recover ∇2Φ = 4πGρ.

2. In the Newtonian limit, we should have g00 ≈ −(1 + 2Φ).

3. General coordinate invariance.

4. Equivalence principle.

Einstein’s equations are differential equations of motion for the metric gµν , regarding

it as a dynamical quantity. It is useful to get the equations of motion from an action:

S[g,X] = Sgrav[g] + Severythingelse[g,X]. (1)

Here X = all other matter or other fields in the problem, e.g. Aµ, etc. For short, we’ll

call the second term the matter contribution, but it includes everything. We could The

equivalence principle states that

Smatter[g,X] =

∫
d4x
√
−|g|Lmatter(η,X)|η→g,∂µ→∇µ

, (2)

i.e. the Lagrangian density is that of the theory without gravity, special relativitistic, with

the simple replacement of ηµν → gµν . This fits with the fact that special relativity applies

in local free-falling coordinates, g
µ̂ν̂

= ηµν . The action (2) is general coordinate invariant

thanks to the minimal replacement with properly transforming tensor quantities.

• Emphasize that (2) assumes and is equivalent to the equivalence principle. It’d be

easy to violate this principle, e.g. coupling things like Aµ to the Riemann tensor. The

equivalence principle says there are no such terms: curvature doesn’t enter into (2). E.g.

Maxwell’s equations become ∇µF νµ = Jν , with no other corrections from gravity, via the

metric, other than that hidden in ∇µ.

• The gravity part of the action gives the terms involving derivatives of the metric.

The basic, properly transforming tensor quantity with derivatives of the metric is the

curvature. To make it generally coordinate invariant, the simplest possibility is

Sgrav = SEH =
α

G

∫
d4x
√
−gR. (3)

More complicated possibilities would include R2 and higher terms, but they turn out to

be not needed (though they might be there with small coefficients – and some theories like
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string theory can lead to some such terms – but no experimental sign of such other terms

has shown up yet). Part of the reason for this is merely dimensional analysis. Recall from

last time that we can take [x] ∼ L0 and [gµν ] ∼ L2 and then [R] ∼ L−2. Since [S] ∼ L0,

and [G] ∼ L2, the parameter [α] ∼ L0 is some number, that we’ll determine. Higher

curvature terms in (3) would be an expansion in powers of (GR), which is extremely small

in normal circumstance, hence hard to observe.

• Now consider the E.L. EOM for (1), (2), (3):

δStot
δgµν

=
δSEH
δgµν

+
δSmatter
δgµν

= 0. (4)

The matter variation gives something nice because

Tµν = −2
1√
−g

δSmatter
δgµν

. (5)

(Recall energy and momentum of point particle from varying its endpoint. This is similar.)

It can be verified that (5) indeed agrees with what you’d get for the energy momentum

tensor from the Noether procedure for spacetime translation symmetry (up to improve-

ments that don’t affect the conserved charges Pµ =
∫
d3xTµ0). This is a nice byproduct

of allowing the metric to vary: it gives a nicer way to define and compute the energy

momentum tensor.

This is great, since we expect the energy momentum tensor to be the source term for

g′µνs differential equation, so the Einstein equations will be

1
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1√
−g

δSEH
δgµν

= Tµν . (6)

Now we work out
1√
−g

δSEH
δgµν

=
α

G

(
Rµν − 1

2Rgµν
)
. (7)

Here there are three terms, from δ(
√
−ggµνRµν). Show e.g. δg = −ggµνδgµν , so δ

√
−g =

− 1
2

√
−ggµνδgµν . Also, get that δRρµλν = ∇λ(δΓρνµ − (λ ↔ ν) and then that the δRµν

term contributes only total covariant derivative terms, that can be dropped.

• Finish next time.
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