
4/4/11 Lecture 3 outline

• Summarize from last time. Examples of 4-scalars: ds2, aµb
µ, dτ =

√
−ds2, mass,

the action, Qencl. Examples of 4-vectors: dxµ, ∂µ (remember ∂µ = (+ ∂
∂t , ∇), pµ = (E, ~p),

kµ = (ω,~k), uµ = dxµ

dτ , fµ = dpµ

dτ = (γPower, γ ~F ), Jµ = (ρ,~j), Jµ = ρdx
µ

dx0 , Aµ = (φ, ~A).

Examples of 4 tensors: energy-momentum Tµν (symmetric), Fµν = ∂µAν − ∂νAµ.

Equations of motion must transform covariantly, so all observers agree if they’re sat-

isfied. This follows from the EL equations, since S is Lorentz invariant

• Last time, recall that for a time-like path dτ =
√
−ds2 and in another frame have

dt = γdτ . For timelike paths have uµ = dxµ/dτ , with uµ = (γ, γ~v), so uµuµ = −1.

• For lightlike paths, write uµ(λ) = dxµ/dλ, with uµuµ = 0. Here λ just parameterizes

the path and there isn’t any physical meaning to it; indeed, we can reparameterize λ →
λ′(λ) and nothing changes.

• As discussed last time, Pµencl =
∫
dV Tµ0. For a perfect fluid, Tµν = diag(ρ, p, p, p),

in the rest frame. So Tµν = (ρ + p)uµuν + pηµν . Illustrates a nice technique: find

tensor expression from starting in the rest frame. (Could also get it directly, by Lorentz

transforming from the rest frame to one moving with velocity uµ through the fluid. But the

above applies even in an non-inertial frame, e.g. if uµ(τ) is the 4-velocity of an accelerated

observer.)

Example: TµνCC = −Ληµν , has ρCC = −pCC .

Back to E&M: dp
µ

dτ = qFµνuν , where F 0i = Ei and F ij = εijkBk. Here Fµν = −F νµ.

Under Lorentz transformations, Fµ
′ν′

= Λµ
′

ρ Λν
′

σ F
ρσ. Maxwell’s equations are ∂µF

νµ = Jν

(which implies ∂νJ
ν = 0), and ∂µFνλ+cyclic= 0. Solve the second via Fµν = ∂µAν−∂νAµ,

with Aµ = (φ, ~A). Note gauge invariance Aµ → Aµ + ∂µf . In Coulomb gauge take

∂µA
µ = 0 and then get ∂2Aν = −Jν . Plane wave solutions like Aµ = εµ(k)eik·x.

For a massive charged particle, S = −m
∫
dτ + q

∫
Aµdx

µ. Gives ~p = ∂L/∂~v =

γm~v + q ~A, and H = ~p · ~v − L = γm+ qφ =

√
m2 + (~p− q ~A)2 + qφ.

• Classical field theory, e.g. for a scalar field: S =
∫
d4xL(Φ, ∂µΦ), with EL equations

∂µ
∂L

∂(∂µΦ)
− ∂L

∂Φ
= 0.

Example, L = − 1
2∂

µΦ∂µΦ− V (Φ), get EL equations (∂2
t − ∇2)Φ + dV

dΦ = 0.

In E&M, we have instead a classical field theory for Aµ(x), L = − 1
4FµνF

µν + AµJ
µ.

Varying w.r.t. Aµ, the EL equations give the Maxwell equations ∂µF
νµ = Jν .
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The energy-momentum tensor is the conserved Noether current related to space-time

translation invariance. Get

TµνE&M = FµλF νλ −
1

4
ηµνFλσFλσ.

• Using uµ to pick out the aµ=0 component is a useful general technique. Example of

Hans Solo’s view of frequency of some star (at say x1 = −∞). In lab frame, it’s ω∗. Hans

sees ωobs = −k ·uobs, which can be evaluated in the lab, ωobs = ω∗(u
0−u1), where uµ is the

4-velocity of the Millennium Falcon, as measured in the lab frame. For example, suppose

t(τ)obs = a−1 sinh aτ and x(τ)obs = a−1 cosh aτ , so u0
obs = cosh aτ and u1

obs = sinh aτ , then

we get ω(τ) = ω∗e
−aτ . At later and later times, the light is more and more red-shifted.

• Equivalence principle

WEP: mi = mg. LHS: enters in ~F = mi~a, and RHS enters in ~Fg = −mg∇Φ, so

~a = −∇Φ. Can’t distinguish between gravity and acceleration. Motion of freely falling

particles locally same in gravity field vs a uniformly accelerating frame. Eotvos experiment.

EEP: In small regions laws of physics reduce to special relativity, freely falling small

observers can’t detect gravity by any local experiment.

E.g. binding energy of hydrogen atom contributes s.t. mi = mg is preserved.

SEP: All laws of physics are such that gravity can’t be detected by local, free falling

observer’s experiments. E.g. gravitational binding energy contributes equally to inertial

and gravitational mass. Is it true? Maybe yes, maybe no - some theories might allow for

small deviations. Tom Murphy is checking this, by precise lunar ranging!

2


