
4/6/11 Lecture 4 outline

? For today’s lecture: Hartle chapter 6.

• Last time: Equivalence principle

WEP: mi = mg. LHS: enters in ~F = mi~a, and RHS enters in ~Fg = −mg∇Φ, so

~a = −∇Φ. Can replace gravity with 〈a〉obs = −~a = +∇Φ.

• Aside on history: mi = mg was tested in the 6th century, in 1586, in 1610 (Galileo),

1680 (Newton), 1832, by dropping balls, rolling balls down inclines, measuring periods of

pendulums with same length. Eotvos in 1908 gave a quantitative measurement, mi = mg

to one part in 109, using his Eotvos balance (which he developed to measure density

variations underground, masses of buildings etc.). Recent Eot-Wash group brought the

bound to one part in 1013.

Can’t distinguish between gravity and acceleration. Motion of freely falling particles

locally same in gravity field vs a uniformly accelerating frame. Eotvos experiment.

EEP: In small regions laws of physics reduce to special relativity, freely falling small

observers can’t detect gravity by any local experiment. E.g. binding energy of hydrogen

atom contributes s.t. mi = mg is preserved.

SEP: All laws of physics are such that gravity can’t be detected by local, free falling

observer’s experiments. Tom Murphy’s lunar ranging experiment can look for e.g. how

the earth and moon which, together with their gravitational self-energy, are together in

free-fall around the sun.

• Theorists age more quickly at UCSD! Clocks run slower where the gravitational

potential is lower. Small effect, but directly measurable with atomic clocks: a clock one

meter above the ground will run faster than one on the ground. The GPS system is

sufficiently precise that it needs to acount for this.

Understand the effect using the equivalence principle, replacing gravity with an accel-

erating rocket. B on bottom of rocket has zB(t) ≈ 1
2gt

2 and A on top has zA(t) ≈ h+ 1
2gt

2.

A emits a light pulse at t = 0 and B detects it at t = t1, where zA(0) − zB(t1) = ct1.

Then A emits another pulse at t = ∆τA and B detects it at t = t1 + δτB , where

zA(∆τA) − zB(t1 + ∆τB) = c(t1 + ∆τB −∆τA). Assume gh � c2, and keep only to first

order in this small quantity. Also assume ∆τA and ∆τB are small, so keep only to linear

order in them. Everything is kept non-relativisitic, so it doesn’t matter if we measure times

and lengths in A’s, B’s, or outside frames. Then find t1 ≈ h/c and ∆τB ≈ ∆A(1− gh/c2).
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Write ~arocket = ∇Φ, where we’re going to identify Φ with the gravitational potential. So

gh = ΦA − ΦB and we have found

∆τB ≈ (1− (ΦA − ΦB)/c2)∆τA.

Let’s also consider the frequency of the light in each pulse. A sends light with frequency

ωA = −kµuµA, then B detects it as having frequency ωB = −kµuµB . Consider the first

pulse and write kµ = ω∗(1, 0, 0,−1) and uµ(t) ≈ (1, 0, 0, gt/c), then ωA ≈ ω∗ and ωB ≈
ω∗(1 + gt1/c) ≈ ω∗(1 + gh/c2). Observer B sees a blue-shift because of their increased

velocity into the direction of the light source. The period of the light according to the two

observers are related by the same expression that we found above for the time between

pulses: ∆τB ≈ ∆τA(1− gh/c2).

Let’s write it another way, for fun, the Doppler shift of the photons for a small

velocity change is:

(
ω + dω
ω + dω

)
=

(
γdv −γdvdv
−γdvdv γdv

)(
ω
ω

)
, which gives dω/ω =

−dv/c = −adx/c2 = −dΦ/c2, and then integrating gives ωB/ωA = e−(ΦB−ΦA)/c2 , so

ωAe
ΦB/c

2

= ωAe
ΦA/c

2

, which we should only take seriously to leading order in Φ/c2.

Time intervals between events are always shorter on B’s clock than on A’s. This is

because B’s local clock is running slower than A’s, so less time elapse is measured by B

than A for the same two events.

• We saw that dτ(1 − Φ/c2) ≡ dt coincides for the two observers. So we’ll write

∆τB ≈ (1 + ΦB/c
2)∆t and ∆τA ≈ (1 + ΦA/c

2)∆t. In gravity, the time interval ∆t

is artificial but still useful; it’s called the “coordinate” time interval. We’ll distinguish

between “coordinate” quantities vs. physical quantities, like proper time.

• Draw a (x, t) diagram of the events of emission of light pulses at xA and their

detection at xB . The light pulses are separated by coordinate separation ∆t for both. But

the proper time intervals are different at the two places. This will be interpreted as coming

from a spacetime metric that differs from ηµν . We have ds2 = gµν(x)dxµdxµ, where gµν(x)

is the spacetime metric.

• In particular, for the above, writing proper time as cdτ =
√
−ds2, we have

ds2(x) ≈ −(1 + 2Φ(x)/c2)(cdt2) + f(x)d~x2, (1)

where all we know at this point is that f(x) ≈ 1 to leading order in 1/c2 (we’ll see that GR

gives f(x) ≈ 1− 2Φ(x)/c2 as the leading correction in 1/c2, but we don’t need that yet).
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So we have gµν ≈ ηµν + (2Φ/c2)δµ0δν0. The interval (1) is our first glimpse of connecting

gravity to spacetime curvature.

• Look at a map of the earth, and the distance between Paris and Montreal vs that

between Lagos and Bogota. The flat-earth theory, that the latter only seems shorter,

because rulers shrink closer to the North and South ”poles”. Better to think in terms of

the curved geometry of the globe vs the flat geometry of maps.

• Next time: Let’s see how the above works. We saw before that a free particle has

S = −mc2
∫
dτ . Using the above, we have

S ≈ −mc2
∫
dt
√

1 + 2Φ(x)/c2 − ~v2/c2 ≈
∫
dt(−mc2 + 1

2m~v
2 −mΦ(x))

where f(x) drops out to our order in 1/c2. The last expression indeed reproduces the

non-relativistic action for a massive particle in the gravitational potential V (x) = mΦ(x)

– it works!

• An appetizer: write Φ = −GM/r, and then note that we have g00 ≈ 1 − 2GM/r.

Though we’ve dropped terms of higher order in Φ/c2, we’ll see later that this is indeed

the exact g00 for a spherical mass (provided that it has no charge or angular momentum).

It looks like something funny happens at r∗ = 2GM : that is the horizon of a black hole.

More to follow.
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