4/6/11 Lecture 4 outline
* For today’s lecture: Hartle chapter 6.

e Last time: Equivalence principle

WEP: m; = m,. LHS: enters in F = m;d, and RHS enters in ﬁg = —my VP, so

QL
|

— V®. Can replace gravity with (a)ops = —d = + V®.

e Aside on history: m; = m, was tested in the 6th century, in 1586, in 1610 (Galileo),
1680 (Newton), 1832, by dropping balls, rolling balls down inclines, measuring periods of
pendulums with same length. Eotvos in 1908 gave a quantitative measurement, m; = my
to one part in 10%, using his Eotvos balance (which he developed to measure density
variations underground, masses of buildings etc.). Recent Eot-Wash group brought the
bound to one part in 10'3.

Can’t distinguish between gravity and acceleration. Motion of freely falling particles
locally same in gravity field vs a uniformly accelerating frame. FEotvos experiment.

EEP: In small regions laws of physics reduce to special relativity, freely falling small
observers can’t detect gravity by any local experiment. E.g. binding energy of hydrogen
atom contributes s.t. m; = my is preserved.

SEP: All laws of physics are such that gravity can’t be detected by local, free falling
observer’s experiments. Tom Murphy’s lunar ranging experiment can look for e.g. how
the earth and moon which, together with their gravitational self-energy, are together in
free-fall around the sun.

e Theorists age more quickly at UCSD! Clocks run slower where the gravitational
potential is lower. Small effect, but directly measurable with atomic clocks: a clock one
meter above the ground will run faster than one on the ground. The GPS system is
sufficiently precise that it needs to acount for this.

Understand the effect using the equivalence principle, replacing gravity with an accel-
erating rocket. B on bottom of rocket has zp(t) ~ 1gt* and A on top has 24 (t) ~ h+ 1 gt?.
A emits a light pulse at ¢ = 0 and B detects it at ¢t = t1, where z4(0) — zp(t1) = ct;.
Then A emits another pulse at ¢t = A74 and B detects it at t = t; + 07, where
2a(AT4) — 2B(t1 + A7) = c(t1 + AT — ATa). Assume gh < 2, and keep only to first
order in this small quantity. Also assume A7, and A7p are small, so keep only to linear
order in them. Everything is kept non-relativisitic, so it doesn’t matter if we measure times

and lengths in A’s, B’s, or outside frames. Then find t; ~ h/c and Atp ~ Aa(1—gh/c?).
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Write @rocket = VP, where we're going to identify ® with the gravitational potential. So

gh = ®4 — &5 and we have found
Arp = (1 — (P — Pp)/c*)AT4A.

Let’s also consider the frequency of the light in each pulse. A sends light with frequency
wa = —kyu'y, then B detects it as having frequency wp = —k,ul;. Consider the first
pulse and write k* = w,(1,0,0,—1) and w*(t) ~ (1,0,0, gt/c), then ws ~ w, and wp ~
wi(1 + gt1/c) ~ wi(1+ gh/c?). Observer B sees a blue-shift because of their increased
velocity into the direction of the light source. The period of the light according to the two
observers are related by the same expression that we found above for the time between
pulses: Atg ~ A1a(1 — gh/c?).

Let’s write it another way, for fun, the Doppler shift of the photons for a small

. . w + dw _ Yo —Ydpdv w ) . _
velocity change is: <w+ dw) = (-’de do s w | which gives dw/w =

—dv/c = —adz/c* = —d®/c?, and then integrating gives wp/wy = e (P5-2a)/¢ o
wae®s/ ¢ = ae®a/ 02, which we should only take seriously to leading order in ®/c?.

Time intervals between events are always shorter on B’s clock than on A’s. This is
because B’s local clock is running slower than A’s, so less time elapse is measured by B
than A for the same two events.

e We saw that dr(1 — ®/c?) = dt coincides for the two observers. So we’ll write
Atg ~ (1 + ®p/c®)At and Aty =~ (1 + ®4/c?)At. In gravity, the time interval At
is artificial but still useful; it’s called the “coordinate” time interval. We’ll distinguish
between “coordinate” quantities vs. physical quantities, like proper time.

e Draw a (z,t) diagram of the events of emission of light pulses at x4 and their
detection at xg. The light pulses are separated by coordinate separation At for both. But
the proper time intervals are different at the two places. This will be interpreted as coming
from a spacetime metric that differs from 7,,,. We have ds* = g,,,,(z)dz"dz", where g, ()
is the spacetime metric.

e In particular, for the above, writing proper time as cdr = v/ —ds?, we have
ds?(z) =~ —(1 4+ 2®(x)/c?)(cdt?) + f(x)di?, (1)

where all we know at this point is that f(x) ~ 1 to leading order in 1/c? (we’ll see that GR
gives f(x) ~ 1 —2®(z)/c? as the leading correction in 1/c?, but we don’t need that yet).
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So we have g, ~ 1, + (29/¢?)d,00,0. The interval (1) is our first glimpse of connecting
gravity to spacetime curvature.

e Look at a map of the earth, and the distance between Paris and Montreal vs that
between Lagos and Bogota. The flat-earth theory, that the latter only seems shorter,
because rulers shrink closer to the North and South ”poles”. Better to think in terms of
the curved geometry of the globe vs the flat geometry of maps.

e Next time: Let’s see how the above works. We saw before that a free particle has

S = —mc? [ dr. Using the above, we have

S ~ —mc? /dt\/l +20(x)/c? — 1?2 ~ /dt(—m02 + imd® — m®(z))

where f(z) drops out to our order in 1/c?. The last expression indeed reproduces the
non-relativistic action for a massive particle in the gravitational potential V(z) = m®(z)
— it works!

e An appetizer: write ® = —GM /r, and then note that we have gogg ~ 1 — 2GM /r.
Though we’ve dropped terms of higher order in ®/c?, we’ll see later that this is indeed
the exact goo for a spherical mass (provided that it has no charge or angular momentum).
It looks like something funny happens at r, = 2GM: that is the horizon of a black hole.

More to follow.



