
4/11/11 Lecture 5 outline

? For today’s lecture: Hartle chapter 7.

• Last time: we saw that dτ(1 − Φ/c2) ≡ dt coincides for the two observers. So we

write ∆τB ≈ (1 + ΦB/c
2)∆t and ∆τA ≈ (1 + ΦA/c

2)∆t. In gravity, the time interval

∆t is artificial but still useful; it’s called the “coordinate” time interval. We’ll distinguish

between “coordinate” quantities vs. physical quantities, like proper time.

Draw a (x, t) diagram of the events of emission of light pulses at xA and their detection

at xB . The light pulses are separated by coordinate separation ∆t for both. But the proper

time intervals are different at the two places. This will be interpreted as coming from a

spacetime metric that differs from ηµν . We have ds2 = gµν(x)dxµdxµ, where gµν(x) is the

spacetime metric.

In particular, for the above, writing proper time as cdτ =
√
−ds2, we have

ds2(x) ≈ −(1 + 2Φ(x)/c2)(cdt2) + f(x)d~x2, (1)

where all we know at this point is that f(x) ≈ 1 to leading order in 1/c2 (we’ll see that GR

gives f(x) ≈ 1− 2Φ(x)/c2 as the leading correction in 1/c2, but we don’t need that yet).

So we have gµν ≈ ηµν + (2Φ/c2)δµ0δν0. The interval (1) is our first glimpse of connecting

gravity to spacetime curvature.

Look at a map of the earth, and the distance between Paris and Montreal vs that

between Lagos and Bogota. The flat-earth theory, that the latter only seems shorter,

because rulers shrink closer to the North and South ”poles”. Better to think in terms of

the curved geometry of the globe vs the flat geometry of maps.

• Let’s see how the above works. We saw before that a free particle has S = −mc2
∫
dτ .

Using the above, we have

S ≈ −mc2
∫
dt
√

1 + 2Φ(x)/c2 − ~v2/c2 ≈
∫
dt(−mc2 + 1

2m~v
2 −mΦ(x))

where f(x) drops out to our order in 1/c2. The last expression indeed reproduces the

non-relativistic action for a massive particle in the gravitational potential V (x) = mΦ(x)

– it works!

• An appetizer: write Φ = −GM/r, and then note that we have g00 ≈ 1 − 2GM/r.

Though we’ve dropped terms of higher order in Φ/c2, we’ll see later that this is indeed

the exact g00 for a spherical mass (provided that it has no charge or angular momentum).
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It looks like something funny happens at r∗ = 2GM : that is the horizon of a black hole.

More to follow.

? Next topic: a bit on the mathematics of curved spacetime, see Hartle ch. 7. Contrast

approaches of Hartle vs standard GR texts like Carroll. Analogy with E&M. We could

defer discussion about how ~E and ~B are actually created (i.e. defer Maxwell’s equations),

just treat them as fixed quantities, and first study how to solve the Lorentz force equation

for small charges in those external fields. Likewise in gravity, we can defer discussion of

how gravity creates curved spacetime (i.e. defer Einstein’s equations) and first study how

small masses move in an external background metric, by the “geodesic equation.” This is

the approach that Hartle takes. The advantage is that we can defer some of the math

discussion. We’ll try this approach here this time. So we’ll cover a minimal amount of

math now, to get to the physics of geodesic motion. Later, we’ll cover more math and get

to Einstein’s equations.

• Flat spacetime in various coordinate systems: ds2 = −dt2 + d~x2 = −dt2 + dr2 +

r2dθ2 + r2 sin2 θdφ2 = −dx2 + dy2 + y2dz2 + y2 sin2 zdt2 (the last one is just trying to

fool you with some funky name choices). Consider a plane with dS2 = dr2 + r2dθ2 and

r′ = a2/r to get dS′2 = (a4/r′4)(dr′2 + r′2dφ2). Apparent singularity at r′ = 0, but it’s

fake.

• Penrose diagram of flat space: u ≡ t− r, v ≡ t+ r, ds2 = −dudv + 1
4 (u− v)2(dθ2 +

sin2 θdφ2). Now replace u′ = tan−1 u and v′ = tan−1 v. Now write u′ = 1
2 (t′ − r′) and

v′ = 1
2 (t′ + r′). The entire (t, r) plane is mapped to the finite triangular region r′ > 0,

v′ < π/2, u′ > −π/2. This is an example of a Penrose diagram, which have the property

that the global structure is exhibited in a finite picture by a conformal transformation, so

light still travels on a 45◦ line, with past and future timelike directions inside that line, and

spacelike directions outside it. The boundary u′ = −π/2 is I− past null infinity (where all

light rays start) and the boundary v = π/2 is I+, future null infinity (where all light rays

end).

• Metric ds2 = gµν(x)dxµdxν . We’ll study how things are affected by coordinate

change. Mathematical statement: for any metric gµν , we can introduce locally, at any

point p, a coordinate system x′p such that the geometry there looks locally flat:

g′µν(x′p) = ηµν and
∂g′µν
∂x′ρ

|x=xp = 0.
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This mathematical statement will connect with the equivalence principle: locally any space-

time is indistinguishable from the flat spacetime of special relativity. Globally is a different

story. Flat maps of small regions of the earth are fine, but globally we need the globe.

Example: sphere at North Pole: ds2 = a2(dθ2+sin2 θdφ2, near θ = 0 use x = aθ cosφ,

y = aθ sinφ, find ds2 = (1−2y2/3a2)dx2 + (1−2x2/3a2)dy2 + 4xydxdy/3a2 +O(ξ3). This

is an example of Gaussian normal coordinates.

• Preview General covariance: the laws of physics are invariant under any co-

ordinate change xµ → xµ
′
(xµ). Equivalence principle: locally at any point there

exists a choice of freely falling coordinates xµ̂ such that massive timelike objects have

d2xµ̂/dτ2 = 0 and dτ2 = −η
µ̂ν̂
dxµ̂dxν̂ . Massless null or lightlike objects have d2xµ̂/dσ2 = 0

and 0 = η
µ̂ν̂
dxµ̂dxν̂ .

• More nice examples from Hartle Ch 7.

Worldline Xµ(τ), e.g. consider metric ds2 = −X2dT 2 + dX2 and worldline X(T ) =

A coshT , get dτ2 = A2(cosh2 T − sinh2 T )dT 2 = A2dT 2, so write Xµ(τ) as (T (τ), X(τ) =

(τ/A,A cosh(τ/A)).

Warp drive spacetime: Hans Solo’s craft travels on xs(t) (and y = z = 0) and locally

modifies the spacetime metric to ds2 = −dt2 + (dx − Vs(t)f(rs)dt)
2 + dy2 + dz2, where

Vs(t) = dxs(t)/dt and f(rs) is a function that’s 1 near the ship rs = 0 and zero away,

where rs is the spatial distance away from the ship. Light cone is ds2 = 0, so dx/dt =

±1+Vs(t)f(rs), gets tipped forward along the direction of motion of the ship. Can connect

stations with ∆t < ∆x by having Vs(t) > 1 in some regions, but still have ship always stay

within its own local light cone.

Such spacetimes need to use negative energy densities, excluded by classical physics

(though not by quantum effects).

Wormhole spacetime (illustrating embedding). Consider ds2 = −dt2 + dr2 + (b2 +

r2)(dθ2 + sin2 θdφ2) on slice t =const. and θ = π/2: dΣ2 = dr2 + (b2 + r2dφ2). Get it

from flat cylindrical coordinates dS2 = dρ2 + ρ2dψ2 + dz2 via z = z(r) and ρ = ρ(r), and

ψ = φ, which gives dΣ2 = (z′(r)2 + ρ′(r)2)dr2 + ρ2dφ2, which gives the metric above for

ρ2 = r2 + b2 and ρ(z) = b cosh(z/b). Plot in (z, ρ) plane and see need negative r to get

negative z. Embedding (r, φ) as a 2d surface in flat 3d space gives the wormhole picture

with two asymptotically flat regions connected by throat of length 2πb.

• Taking ds2 = g00(dx0)2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2, find area elements

e.g. dA =
√
g11g22dx

1dx2, 3-volume elements dV =
√
g11g22g33dx

1dx2dx3, and 4-volume

element dv =
√
−g00g11g22g33d4x.
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• Back to vectors, V = V µe(µ), where V is a geometric object, invariant under coor-

dinate transformations, but components V µ and basis vectors e(µ) do change, e.g. under

xµ
′

= Λµ
′

ν x
ν , then V µ

′
= Λµ

′
νV

ν , and e(µ′) = Λνµ′e(ν). Also introduce dual vectors

(1-forms), ω = ωµθ
(µ), which transform like e.g. ωµ′ = Λνµ′ων and θ(µ

′) = Λµ
′
νθ

(ν).

Geometric vectors have a basepoint p, which can be any point in the geometry, and

the vector lies in the tangent space Tp. E.g. along xµ(λ) a function has df/dλ = dxµ

dλ
∂f
∂xµ ,

so write
d

dλ
|p =

dxµ

dλ

∂

∂xµ

and think of this as an example of V = V µe(µ), with V = d
dλ , V µ = dxµ

dλ , and e(µ) = ∂
∂xµ .

For dual vectors we write e.g. df = ∂f
∂xµ dx

µ, and think of this as ω = ωµθ
(µ) with

θ(µ) = dxµ the basis for 1-forms (cotangent space).

• Hypersurfaces, e.g. x0 = h(x1, x2, x3) is a spacelike slice. Tangents are t and

normal is n, with n · t = 0, and the surface is spacelike as long as n · n < 0. E.g. Lorentz

Hyperboloid, −t2 + r2 = a2. Write t = a coshχ and r = a sinhχ, so the tangent is

tµ = (a sinhχ, a coshχ, 0, 0) and normal is nµ = (coshχ, sinhχ, 0, 0), with n · n = −1.
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