
4/16/12 Lecture outline

⋆ Reading: Zwiebach chapters 2 and 3.

• As mentioned last time, the action for a relativistic point particle of mass m is S =

−mc
∫

ds = −mc2
∫

dt
√

1− v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2,

both of which are constants of the motion (thanks to the time and spatial translation

invariance).

• Reparametrization invariance: write xµ(τ), and can change worldline parameter τ

to an arbitrary new parameterization τ ′(τ), and the action is invariant. To see this use

S = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ and change dxµ

dτ = dxµ

dτ ′

dτ ′

dτ and note that S → S. The Euler

Lagrange equations of motion are
dpµ

dτ
= 0.

When the particle is charged and in the presence of electric and magnetic fields, there

is the new term in the action

S =

∫

(−mcds+
q

c
Aµdx

µ), (1)

which is manifestly relativistically invariant (and also repparameterization) invariant. Note

also that, under a gauge transformation, we have S → S + qf
c , which does not affect the

equations of motion (just as changing the Lagrangian by a total time derivative does not).

The lagrangian is thus L = −mc
√

1− ~v2/c2 + q
c~v ·

~A− qφ. The momentum conjugate

to ~r is ~P = ∂L/∂~v = m~v/
√

1− ~v2/c2 + q
c
~A. The Hamiltonian is H = ~v · ~P − L =

√

m2c4 + c2( ~P − q
c
~A)2 + qφ.

The equations of motion can be written as d2xµ

dτ2 = q
mcFµν

dxν

dτ .

In the non-relativistic limit we have H = 1
2m

( ~P − q
c
~A)2 + qφ, where ~P − q

c
~A = m~v.

• The electric and magnetic fields themselves have a lagrangian, with action

S =

∫

d4xL, L = −
1

4
FµνF

µν +
1

c
Aµj

µ.

The two Maxwell’s equations expression absence of magnetic monopoles are, again, solved

by setting Fµν = ∂[µAν]. The other two Maxwell’s equations then come from the Euler

-Lagrange equations of the above action upon varying Aµ → Aµ + δAµ: the action is

stationary when

∂ν
∂L

∂(∂νAµ)
−

∂L

∂Aµ
= 0.
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• In quantum mechanics, we have [xk, P ℓ] = ih̄δk,ℓ, so we replace ~P → −ih̄∇ in

position space. The S.E. is Hψ = ih̄∂tψ. Note that the derivatives only appear in the

“covariant derivative” combination

Dµ = ∂µ − i
q

h̄c
Aµ. (2)

This is crucial for gauge invariance of physics.

The reason is that gauge invariance is more interesting in quantum theory, as the

wavefunction changes under gauge transformations:

ψ(t, ~x) → eiqf(t,~x)/h̄cψ(t, ~x), (3)

which leaves the probability density and current unchanged. (One way to see this is via

ψ ∼ eiS/h̄ and noting from the above expression for S that that S → S + qf/c.)

The above covariant derivatives have the property that Dµψ → eiqf/h̄cDµψ under

a gauge transformation, with the shift Aµ → Aµ + ∂µf canceling the bad term ∼ ∂µf .

Because derivatives are all covariant, the local parameter f(x) always only enters as an

overall phase, which remains physically unobservable upon computing probability || · ||2.

Gauge invariance says that physics observables can’t notice gauge transformations by

arbitrary f(x). This phase transformation is called U(1) gauge invariance, i.e. we can take

ψ → U(x)ψ, where U(x) = eiqf/h̄c is an arbitrary local U(1) symmetry transformation.

This is why electromagnetism is called a U(1) gauge theory in modern high energy physics,

where gauge symmetries are fundamental, and in direct correspondence with the funda-

mental forces. Each of the 4-known forces is associated with a gauge invariance. (Gravity’s

is general coordinate invariance.)

According to Noether’s theorem, there is a one-to-one correspondence

(continuous) global symmetry ↔ conserved quantity.

The original example the relation between translation symmetry in time and/or space,

xµ → xµ + aµ, and conservation of energy and/or momentum, pµ.

There is a deep correspondence

local gauge symmetry → forces.

and E&M is the force associated with the local symmetry above. There is still a conserved

charge, in E&M it is current conservation ∂µjµ = 0. As we’ll now discuss, in general

relativity (GR) the above spacetime translation symmetry is a subgroup of a more general

symmetry, general coordinate invariance, which is the fundamental symmetry principle

associated with gravity.
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