4/16/12 Lecture outline

* Reading: Zwiebach chapters 2 and 3.

e As mentioned last time, the action for a relativistic point particle of mass m is S =
—me [ ds = —mc? [ dt\/1 —v2/c2. This gives = 0y = ym¥ and H = - ¥ — L = ymc?,
both of which are constants of the motion (thanks to the time and spatial translation
invariance).

e Reparametrization invariance: write z,(7), and can change worldline parameter 7
to an arbitrary new parameterization 7/(7), and the action is invariant. To see this use

S = —me [ /=N L9 and change - = 427 ‘fl—i and note that S — S. The Euler

Lagrange equations of motion are % =
When the particle is charged and in the presence of electric and magnetic fields, there

is the new term in the action
S = /(—mcds + gAudx“), (1)
c

which is manifestly relativistically invariant (and also repparameterization) invariant. Note
also that, under a gauge transformation, we have S — S + %, which does not affect the
equations of motion (just as changing the Lagrangian by a total time derivative does not).
The lagrangian is thus L = —mcy/1 — 02 /c? + 17+ A — gé. The momentum conjugate
to 7 is P = OL/8T = mi/\/1— 2/ + %ff The Hamiltonian is H = - P — L =
\/m204 + (P — %E)Q + qo.
a2z

The equations of motion can be written as 7% =

dz”
Fy,

vidr

In the non-relativistic limit we have H = ﬁ(ﬁ — %/T)Q + g, where P — %ff = m.

a
e The electric and magnetic fields themselves have a lagrangian, with action
4 1 3% 1 A it
S: dl’ﬁ, EZ_ZFNVF +E Mj .

The two Maxwell’s equations expression absence of magnetic monopoles are, again, solved
by setting F,, = 0;,A,). The other two Maxwell’s equations then come from the Euler
-Lagrange equations of the above action upon varying A, — A, + 0A,: the action is

stationary when
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e In quantum mechanics, we have [2*, P‘] = ihd*¢, so we replace P — —ihV in
position space. The S.E. is Hvy = th0;p. Note that the derivatives only appear in the
“covariant derivative” combination

D, =09, - %AH. 2)
This is crucial for gauge invariance of physics.
The reason is that gauge invariance is more interesting in quantum theory, as the

wavefunction changes under gauge transformations:
W(t, T) — e GO/ eyt 7). N

which leaves the probability density and current unchanged. (One way to see this is via
Y ~ €*3/" and noting from the above expression for S that that S — S + ¢f/c.)

The above covariant derivatives have the property that D,y — eiat/ hCDM@b under
a gauge transformation, with the shift A, — A, + 0, f canceling the bad term ~ 9, f.
Because derivatives are all covariant, the local parameter f(x) always only enters as an
overall phase, which remains physically unobservable upon computing probability || - ||2.

Gauge invariance says that physics observables can’t notice gauge transformations by
arbitrary f(z). This phase transformation is called U (1) gauge invariance, i.e. we can take
¢ — U(z), where U(z) = €97/ is an arbitrary local U(1) symmetry transformation.
This is why electromagnetism is called a U (1) gauge theory in modern high energy physics,
where gauge symmetries are fundamental, and in direct correspondence with the funda-
mental forces. Each of the 4-known forces is associated with a gauge invariance. (Gravity’s
is general coordinate invariance.)

According to Noether’s theorem, there is a one-to-one correspondence
(continuous) global symmetry <> conserved quantity.

The original example the relation between translation symmetry in time and/or space,
xt — x4 ot and conservation of energy and/or momentum, p*.

There is a deep correspondence
local gauge symmetry — forces.

and E&M is the force associated with the local symmetry above. There is still a conserved
charge, in E&M it is current conservation 0*j, = 0. As we’ll now discuss, in general
relativity (GR) the above spacetime translation symmetry is a subgroup of a more general
symmetry, general coordinate invariance, which is the fundamental symmetry principle

associated with gravity.



