4/18/12 Lecture outline
* Reading: Zwiebach chapters 2, 3 and 5.
e Last time: in quantum mechanics, derivatives only appear in the “covariant deriva-
tive” combination

DH‘ - au - AM' (1)

i
he
This is crucial for gauge invariance of physics under A, — A, + 0, f, as the wavefunction

changes under gauge transformations:
U(t, &) — DMyt 7). (2)

The above covariant derivatives have the property that D, — etaf/ FLCDMO,ZJ under a gauge
transformation, with the shift A, — A, + 0, f canceling the bad term ~ 9, f. Because
derivatives are all covariant, the local parameter f(x) always only enters as an overall
phase, which remains physically unobservable upon computing probability || - ||2.

Gauge invariance says that physics observables can’t notice gauge transformations by
arbitrary f(z). This phase transformation is called U (1) gauge invariance, i.e. we can take
¢ — U(z), where U(z) = €4/ is an arbitrary local U(1) symmetry transformation.
This is why electromagnetism is called a U (1) gauge theory in modern high energy physics,
where gauge symmetries are fundamental, and in direct correspondence with the funda-
mental forces. Each of the 4-known forces is associated with a gauge invariance. (Gravity’s
is general coordinate invariance.)

The U(1)gy symmetry is the symmetry of rotating a circle. In Kaluza-Klein theory,
this circle is that of the compact 5-th dimension! Since charge is quantized, ¢ = ne,
where —e is the charge of an electron, the gauge symmetry above doesn’t even change the
wavefunction if f — f + 27he/e

Another idea for charge quantization: monopoles and Dirac quantization. In vacuo,
Maxwell’s equations are symmetric under E—-Band B — —E (in relativistic notation,
FHv — etvro Y. Dirac string and e/ — eis/h—i—eiefg'df/hc so § A-dZ = [ B-dd = 4ng
where eg = %hcn, with n an integer. We haven’t seen a monopole yet, but inflation could
have removed them. Also in GUTs, U(1) gy is part of a larger symmetry, which leads to
monopoles and charge quantization.

e A brief (!) introduction to general relativity. We replace the metric 7,, with
a dynamical quantity g¢,,. There is a symmetry principle which is akin to the gauge

invariance of electricity and magnetism and to the above reprarameterization invariance.
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It is general coordinate invariance: x# — x* (z*). Physics is invariant under such local

/ /
. : _ dx" dz”
coordinate changes. The metric transforms as g,, = guv T o -

particle is S = —mec [ ds + 1 [ A,dx*, just like before, except that we contract and raise

The action of a point

and lower indices with g, rather than n*. Get from the Euler Lagrange equations now
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where

Fga = %gMA(apgAU + aag)\p - 6>\ng)

is the connection; it is analogous to A" in electromagnetism. The connection enters into
covariant derivatives like V,V# = 9,V# 4+ 1 V7 in order to have things transform prop-
erly under general coordinate transformations (analogous to the gauge invariant covariant
derivatives D, = 0, — iz A,. in E&M). The above equations of motion is called the
geodesic equation; it is reparameterization invariant (7 — 7’) and transforms properly
under general coordinate transformations x* — o

The Riemann tensor is

Rf = aﬂrﬁa + FPAP?)U - (/’L « V)‘

opv w

It is analogous to F},, in E&M. The Ricci tensor is R, = RZ‘M and the Ricci scalar is

R = Ry;. The metric is dynamically determined by minimizing the action w.r.t. dg,.,

where there is a term

S ! /dDa:\/\g\R—i—....

- 167G p

For fun, we wrote it in general spacetime dimension D. Let’s note the units (setting c=1):
[R] = L72 and [S] = ML, so [Gp] = LP=3M~'. Since [h] = ML, we have Gp = (5 ?
in D spacetime dimensions. (Note that [ d” a:\/m gives the spacetime volume (which is
clearly general coordinate invariant). This comment will be useful very soon, when we
write down the relativistic string action!)

Note also that the relation Gp = GV is evident from the above action.

In the weak curvature limit, we can reduce to the gravitational potentials, with
VQVQ(D) = 41Gpppm. This comes from g,, ~ 1., + hy and hog = =2V,

e Electromagnetism in other dimensions: F* = 9FA*] and O FH = % Jv.

So e.g.
a point charge ¢ makes an electric field with V - E = q6%(Z) in a world with D = d + 1

spacetime dimension (the 41 is the time dimension, and there are d spatial directions),
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SO [gu-1 E -dd = q. Thus E = E(r)7 with E(r) = q/r* *vol(841), where vol(S41) =
21?2 /T'(d/2) is the volume of a unit sphere surrounding the charge. Finally, we get that
a point charge makes electric field given by E(r) = I'(d/2)q/2x%?r?=1. For d = 3, get
E(r) = q/4wr?, which is the usual answer in these units.

e Gravity has general coordinate invariance, a# — z* (z*). At the linearized level,
take g, = 1y + by and oM =gt o+ e (x), with dh,, ~ 0(,€,).

Recall mp = /hc/G = 2.176 x 10~ °g.

In 4d, we have gravitational potential given by Vg(4) = —GM/r, which solves
VQVQ(D) = 47G(P)p,,. This is taken to be the gravitational potential equation in any
spacetime dimension, with gravitational force taken to be ' = —mVV,. Inh =c =1
units, get G = Eg_z in D spacetime dimensions. Get G” = GV, where V¢ is the com-
pactification volume.

be = EEDD)(ESDD)/EP)Q/(D_‘Q, can imagine e.g. EgDD) ~ 107 8¢cm instead of £p ~ 107 33em
(i.e. lower gravitational physics effects to MI(DD) ~ 20TeV from Mp ~ 10%TeV) which for

D = 6 gives {c ~ 107 3cm — large extra dimensions.



