
4/18/12 Lecture outline

⋆ Reading: Zwiebach chapters 2, 3 and 5.

• Last time: in quantum mechanics, derivatives only appear in the “covariant deriva-

tive” combination

Dµ = ∂µ − i
q

h̄c
Aµ. (1)

This is crucial for gauge invariance of physics under Aµ → Aµ + ∂µf , as the wavefunction

changes under gauge transformations:

ψ(t, ~x) → eiqf(t,~x)/h̄cψ(t, ~x). (2)

The above covariant derivatives have the property that Dµψ → eiqf/h̄cDµψ under a gauge

transformation, with the shift Aµ → Aµ + ∂µf canceling the bad term ∼ ∂µf . Because

derivatives are all covariant, the local parameter f(x) always only enters as an overall

phase, which remains physically unobservable upon computing probability || · ||2.

Gauge invariance says that physics observables can’t notice gauge transformations by

arbitrary f(x). This phase transformation is called U(1) gauge invariance, i.e. we can take

ψ → U(x)ψ, where U(x) = eiqf/h̄c is an arbitrary local U(1) symmetry transformation.

This is why electromagnetism is called a U(1) gauge theory in modern high energy physics,

where gauge symmetries are fundamental, and in direct correspondence with the funda-

mental forces. Each of the 4-known forces is associated with a gauge invariance. (Gravity’s

is general coordinate invariance.)

The U(1)EM symmetry is the symmetry of rotating a circle. In Kaluza-Klein theory,

this circle is that of the compact 5-th dimension! Since charge is quantized, q = ne,

where −e is the charge of an electron, the gauge symmetry above doesn’t even change the

wavefunction if f → f + 2πh̄c/e

Another idea for charge quantization: monopoles and Dirac quantization. In vacuo,

Maxwell’s equations are symmetric under ~E → ~B and ~B → −~E (in relativistic notation,

Fµν → ǫµνρσFρσ). Dirac string and eiS/h̄ → eiS/h̄+eie
∮

~A·d~x/h̄c so
∮
~A·d~x =

∫
~B ·d~a = 4πg

where eg = 1
2 h̄cn, with n an integer. We haven’t seen a monopole yet, but inflation could

have removed them. Also in GUTs, U(1)EM is part of a larger symmetry, which leads to

monopoles and charge quantization.

• A brief (!) introduction to general relativity. We replace the metric ηµν with

a dynamical quantity gµν . There is a symmetry principle which is akin to the gauge

invariance of electricity and magnetism and to the above reprarameterization invariance.
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It is general coordinate invariance: xµ → xµ
′

(xµ). Physics is invariant under such local

coordinate changes. The metric transforms as gµν = gµ′ν′

dxµ′

dxµ
dxν′

dxν . The action of a point

particle is S = −mc
∫
ds + q

c

∫
Aµdx

µ, just like before, except that we contract and raise

and lower indices with gµν rather than ηµν . Get from the Euler Lagrange equations now

d2xµ

dτ2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

mc
Fµ
ν

dxν

dτ
,

where

Γµ
ρσ = 1

2
gµλ(∂ρgλσ + ∂σgλρ − ∂λgρσ)

is the connection; it is analogous to Aµ in electromagnetism. The connection enters into

covariant derivatives like ∇ρV
µ = ∂ρV

µ +Γµ
ρσV

σ in order to have things transform prop-

erly under general coordinate transformations (analogous to the gauge invariant covariant

derivatives Dµ = ∂µ − i q
h̄c
Aµ. in E&M). The above equations of motion is called the

geodesic equation; it is reparameterization invariant (τ → τ ′) and transforms properly

under general coordinate transformations xµ → xµ
′

.

The Riemann tensor is

Rρ
σµν = ∂µΓ

ρ
νσ + Γρ

µλΓ
λ
νσ − (µ↔ ν).

It is analogous to Fµν in E&M. The Ricci tensor is Rµν = Rλ
µλν and the Ricci scalar is

R = Rµ
µ. The metric is dynamically determined by minimizing the action w.r.t. δgµν ,

where there is a term

S =
1

16πGD

∫
dDx

√
|g|R+ . . . .

For fun, we wrote it in general spacetime dimension D. Let’s note the units (setting c=1):

[R] = L−2 and [S] = ML, so [GD] = LD−3M−1. Since [h̄] = ML, we have GD = ℓD−2
P

in D spacetime dimensions. (Note that
∫
dDx

√
|g| gives the spacetime volume (which is

clearly general coordinate invariant). This comment will be useful very soon, when we

write down the relativistic string action!)

Note also that the relation GD = GVC is evident from the above action.

In the weak curvature limit, we can reduce to the gravitational potentials, with

∇2V
(D)
g = 4πGDρm. This comes from gµν ≈ ηµν + hµν and h0,0 ≈ −2Vg.

• Electromagnetism in other dimensions: Fµν = ∂[µAν] and ∂µF
µν = 1

c
jν . So e.g.

a point charge q makes an electric field with ∇ · ~E = qδd(~x) in a world with D = d + 1

spacetime dimension (the +1 is the time dimension, and there are d spatial directions),
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so
∫
Sd−1

~E · d~a = q. Thus ~E = E(r)r̂ with E(r) = q/rd−1vol(Sd−1), where vol(Sd−1) =

2πd/2/Γ(d/2) is the volume of a unit sphere surrounding the charge. Finally, we get that

a point charge makes electric field given by E(r) = Γ(d/2)q/2πd/2rd−1. For d = 3, get

E(r) = q/4πr2, which is the usual answer in these units.

• Gravity has general coordinate invariance, xµ → xµ
′

(xµ). At the linearized level,

take gµν = ηµν + hµν and xµ
′

= xµ + ǫµ(x), with δhµν ≈ ∂(µǫν).

Recall mP =
√
h̄c/G = 2.176× 10−5g.

In 4d, we have gravitational potential given by V
(4)
g = −GM/r, which solves

∇2V
(D)
g = 4πG(D)ρm. This is taken to be the gravitational potential equation in any

spacetime dimension, with gravitational force taken to be F = −m∇Vg . In h̄ = c = 1

units, get G = ℓD−2
P in D spacetime dimensions. Get GD = GVC , where VC is the com-

pactification volume.

ℓC = ℓ
(D)
P (ℓ

(D)
P /ℓP )

2/(D−4), can imagine e.g. ℓ
(D)
P ∼ 10−18cm instead of ℓP ∼ 10−33cm

(i.e. lower gravitational physics effects to M
(D)
P ∼ 20TeV from MP ∼ 1016TeV ) which for

D = 6 gives ℓC ∼ 10−3cm – large extra dimensions.
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