5/31/17 Lecture 16 outline / summary

• Next topic: evidence for $SU(3)_C$.

• Recall the j = 3/2 baryons, they were completely symmetric in spin and $SU(3)_F$. But quarks are fermions and the complete wavefunction should be fully antisymmetric. $SU(3)_C$ fixes this: the baryons are made up of 3 quarks, each in the 3 of $SU(3)_C$, combined into a color neutral object using $\epsilon_{c_1c_2c_3}$. More on the SU(3) multiplication rules.

• More evidence: $e^+e^- \to \gamma \to q\bar{q} \to \text{jets.}$ Compute tree-level amplitude and motivate $\sigma = (\pi/3)(Q\alpha/E)^2$ and hence $R = \sigma(e^+e^- \to \text{jets})/\sigma(e^+e^- \to \mu^+\mu^-) = N_c \sum Q_i^2$. Experimentalists measure this, and thereby show that $N_c = 3$.

• More about \mathcal{L}_{QCD} and $U(1)_{QED}$ vs $SU(3)_C$ gauge invariance. $\mathcal{L} \supset \bar{\psi}(i\not{\!\!D} - m)\psi$, with $D_{\mu} = \partial_{\mu} + iqA_{\mu} + igT^aA^a_{\mu}$.

• $F_{\mu\nu} = [D_{\mu}, D_{\nu}]/(-ig) = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}]$, in the adjoint representation of the gauge group.

- $\mathcal{L} \supset -\frac{1}{4}TrF_{\mu\nu}F^{\mu\nu} \supset -gf^{abc}\partial_{\mu}A^{a}_{\nu}F^{\mu b}A^{\nu c} (g^{2}/4)f^{abc}f^{ade}A^{b}_{\mu}A^{c}_{\nu}A^{\mu d}A^{\nu e}.$
- QCD Feynman rules.
- Asymptotic freedom and QCD.