4/5/17 Lecture 2 outline

• Baryons, e.g. proton, neutron, other cousins, made up from 3 quarks.

• Mesons (Yukawa 1934) "holds nucleus together". Massive. Seen in cosmic rays. Now we know they're made up from 2 quarks.

Meson lifetimes, e.g. $\tau_{\pi^{\pm}} \sim 2.6 \times 10^{-8} s$, $\tau_{\pi^0} \sim 8.4 \times 10^{-17} s$.

• Muons (1946), seen in cosmic rays. Exactly like the electron, but much heavier. $m_e \sim .51 MeV, m_\mu \sim 105.6 MeV, \tau_\mu \sim 2.2 \times 10^{-6}$ seconds "long lived".

• Neutrinos. Massless or very light, neutral very weakly interacting. Pauli 1930 proposed it to recover energy and momentum conservation in beta decays.

- Beta decays: $n \to p^+ + e^- + \overline{\nu}$, and $\mu^- \to e^- + \nu_\mu + \overline{\nu}_e$. $\pi^- \to \mu^- + \overline{\nu}_\mu$.
- Strange particles, and new zoo of a new generation of particles.

All organized by the Standard Model.

• Relativity review: $x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$ and inverse. $ds^2 = ds'^2$ and metric. $ds^2 = c^2 d\tau^2$ for timelike. 4-vectors more generally. Examples: p^{μ} , k^{μ} , $u^{\mu} = dx^{\mu}/d\tau$, j^{μ} , $A^{\mu} = (\phi, \vec{A})$. Upper and lower indices, and 4-dot products, example of ∂_{μ} and conservation $\partial_{\mu} j^{\mu} = 0$. Invariance of d^4x and $j^0 d^3x$. (Some asides on $g_{\mu\nu}$ in GR vs $\eta_{\mu\nu}$ here.)

• $S = -mc^2 \int d\tau$ and L for relativistic particle. Relativistic charged particle $S \supset -(q/c) \int A_{\mu} dx^{\mu}$ and term in $L \supset -q\phi + (q/c)\vec{v} \cdot \vec{A}$. Canonical momentum $\vec{p} = \partial L/\partial \vec{v} = \gamma m \vec{v} - q \vec{A}/c$ and $H = \vec{p} \cdot \vec{v} - L = \gamma mc^2 - q\phi$ (magnetic fields do no work). But H should be expressed in terms of \vec{p} .

• QM: replace $\hat{p}^{\mu} \to i\hbar\partial^{\mu}$ in position space. Consider the S.E.

• Punchline: in non-rel limit get $i\hbar D^0\psi = (\hbar^2/2m)\vec{D}^2\psi$, where $D^{\mu} \equiv (D^0, \vec{D}) = \partial^{\mu} - (q/i\hbar c)A^{\mu}$.

• Last time: Get $p^{\mu} \to p^{\mu} - (q/c)A^{\mu}$ when a charged particle is in an \vec{E} and \vec{B} field. For QM, $p^{\mu} \to i\hbar\partial^{\mu}$ in position space, so get e.g. $i\hbar D^{0}\psi = (-\hbar^{2}/2m)\vec{D}^{2}\psi$, where (punchline) $D^{\mu} \equiv (D^{0}, \vec{D}) = \partial^{\mu} - (q/i\hbar c)A^{\mu}$ is the covariant derivative.

• $S = \ldots - q/c \int A_{\mu} dx^{\mu}$ and gauge invariance.

• Gauge transformations $A_{\mu} \to A_{\mu} + \partial_{\mu} f(x)$, and local U(1) phase rotation of $\psi \to e^{-iq/\hbar c}\psi$, with $D_{\mu}\psi \to e^{-iq/\hbar c}D_{\mu}\psi$.

• Path integral description of QM, solenoids and observability of flux inside. Dirac's magnetic monopoles and quantization rule.

• Klein Gordon theory, SHO, and charged Klein Gordon theory. Covariant derivatives and minimal substitution. Euler Lagrangian equations for field theory.

- $S = \int d^4x (-1/4) F_{\mu\nu} F^{\mu\nu} j^{\mu} A_{\mu}/c.$
- Dirac equation and Lagrangian