4/10/17 Lecture 3 outline

• Last time: $S = -mc^2 \int d\tau$ and L for relativistic particle. Relativistic charged particle $S \supset -(q/c) \int A_{\mu} dx^{\mu}$ and term in $L \supset -q\phi + (q/c)\vec{v} \cdot \vec{A}$. Canonical momentum $\vec{p} = \partial L/\partial \vec{v} = \gamma m \vec{v} - q \vec{A}/c$ and $H = \vec{p} \cdot \vec{v} - L = \gamma mc^2 - q\phi$ (magnetic fields do no work). But H should be expressed in terms of \vec{p} .

• QM: replace $\hat{p}^{\mu} \to i\hbar\partial^{\mu}$ in position space. Consider the S.E.

• Punchline: in non-rel limit get $i\hbar D^0\psi = (\hbar^2/2m)\vec{D}^2\psi$, where $D^{\mu} \equiv (D^0, \vec{D}) = \partial^{\mu} - (q/i\hbar c)A^{\mu}$.

Get $p^{\mu} \to p^{\mu} - (q/c)A^{\mu}$ when a charged particle is in an \vec{E} and \vec{B} field. For QM, $p^{\mu} \to i\hbar\partial^{\mu}$ in position space, so get e.g. $i\hbar D^{0}\psi = (-\hbar^{2}/2m)\vec{D}^{2}\psi$, where (punchline) $D^{\mu} \equiv (D^{0}, \vec{D}) = \partial^{\mu} - (q/i\hbar c)A^{\mu}$ is the covariant derivative.

• $S = \ldots - q/c \int A_{\mu} dx^{\mu}$ and gauge invariance.

• Gauge transformations $A_{\mu} \to A_{\mu} + \partial_{\mu} f(x)$, and local U(1) phase rotation of $\psi \to e^{-iq/\hbar c}\psi$, with $D_{\mu}\psi \to e^{-iq/\hbar c}D_{\mu}\psi$.

• Hamiltonian picture: $i\hbar\partial_t U(t,t_0) = HU(t,t_0), i\hbar|\psi(t)\rangle_S = H|\psi(t)\rangle_S$, and $\mathcal{O}^H = U^{\dagger}\mathcal{O}U$ has

$$\frac{d}{dt}\mathcal{O}^{H} = \frac{1}{i\hbar}[\mathcal{O}^{H}, H] + \frac{\partial}{\partial t}\mathcal{O}^{H}.$$

Consider e.g. the SHO, $H = p^2/2m + \frac{1}{2}m^2\omega^2 x^2$. The equation $H|n\rangle = E_n|n\rangle$ in position space becomes a 2nd-order differential equation which has solution given by some special functions. Happily, there is a much better way to solve this problem, which is simpler, more interesting, and more important than solving a differential equation. It uses creation and annihilation operators

$$a \equiv \sqrt{\frac{m\omega}{2\hbar}} (x + ip/m\omega),$$
 so $a^{\dagger} \equiv \sqrt{\frac{m\omega}{2\hbar}} (x - ip/m\omega).$

These satisfy the fundamental property $[a, a^{\dagger}] = 1$. We can then immediately show that the Hermitian operator $N = a^{\dagger}a$ has eigenvalues n = 0, 1, 2..., and the eigenvectors $|n\rangle$ satisfy $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^{\dagger}|n\rangle = \sqrt{n+1}|n\rangle$. Since $H_{SHO} = \hbar(\omega N + \frac{1}{2})$, we're done. If we really want $\langle x|n\rangle$, we can get it from $|n\rangle = (n!)^{-1/2}(a^{\dagger})^n|0\rangle$ by replacing $p \to -i\hbar \frac{d}{dx}$ and we can solve for $\psi_0(x) = \langle x|0\rangle$ by using $a|0\rangle = 0$, which in position space becomes a simple first-order differential equation for $\psi_0(x)$:

$$\psi_n(x) = \frac{(m\omega/2\hbar)^{n/2}}{\sqrt{n!}} (x - \frac{\hbar}{m\omega} \frac{d}{dx})^n \psi_0(x), \qquad (x + \frac{\hbar}{m\omega} \frac{d}{dx}) \psi_0(x) = 0.$$

In the Heisenberg picture we have $\dot{a} = -i\omega a$, hence $a(t) = e^{-i\omega t}a$, where a = a(0).

• Path integral description of QM, solenoids and observability of flux inside. Dirac's magnetic monopoles and quantization rule.

• Klein Gordon theory, SHO, and charged Klein Gordon theory. Covariant derivatives and minimal substitution. Euler Lagrangian equations for field theory.

• $S = \int d^4x (-1/4) F_{\mu\nu} F^{\mu\nu} - j^{\mu} A_{\mu}/c.$

• Dirac equation and Lagrangian