
Physics 105a, Ken Intriligator lecture 4, October 10, 2017

• Continue with lecture 3 mathematica notebook examples (on TED side), of examples

of residues, poles, verifying that the CR equations are satisfied, and noting that they imply

that ℜf(z) and ℑf(z) are solutions of the 2d Laplace equations; examples. Useful for e.g.

some electrostatics problems. Verify it for some examples using Mathematica.

• Discuss
∮
C
dz/z = 2πi in terms of z−1 = ∂z log z and the behavior of log z in the

complex plane. Write f(z)dz in terms of real and imaginary parts, and then as ( ~F ·dℓ, (d~ℓ×
~F ), with ~F = (u,−v), and note that the CR equations imply that ~F has no divergence or

curl, clarifying why
∮
f(z)dz is “almost zero”, up to the effects from the poles. Indeed,

the poles are places where singularities of the derivatives of a certain type. This is related

to the fact that log(z − z0) is a Green’s function for the 2d Laplacian. We will discuss

Green’s functions later.

• Recall the example of
∫
∞

−∞
dx(1 + x2)−1 = π, and show that one gets the same

answer if C is closed instead in the lower half plane, accounting for the sign convention.

• Other examples of evaluating integrals by Cauchy’s theorem.
∫ π

0
dθ/(a+ b cos θ) =

π/
√
a2 − b2,

• Residues and poles of π/ sin(πz) and π cos(πz)/ sin(πz) and applications of Cauchy’s

theorem to evaluate some sums,
∑

∞

n=1
f(n). Examples in the mathematica notebook.

• Example: consider an L, R circuit, driven by source V (t) = A
∫
eiωtdω/2π; this

source corresponds to a voltage spike at time t = 0. Find I(t) = A
∫
(R + iωL)−1dω/2π.

Discuss where to close the contour and get I(t < 0) = 0 and I(t > 0) = (A/L)e−Rt/L.

Makes sense.

Ended here. Continue with below next time

• Gamma function Γ(z); give integral definition and type it into mathematica, Γ(z +

1) = zΓ(z) and relation to factorial. Poles at x = 0 and negative integers. Check with

mathematica. Also Γ(z)Γ(1− z) = π/ sin(πz).

• Gaussian integral, including in multi-dimensions. Normalization of the normal dis-

tribution. Relation to spherical integrals and solid angles.

• Example of forced SHO with F (t) = F cos(ωt) and the particular solution for both

ω 6= ω0 and ω = ω0.

• Suppose that we want to solve the ODE d2x
dt2 = f(x, ẋ), where f is some given

function, e.g. f = −ω2

0
x− γv for the case of a damped SHO. Note that we are here taking

f(x, ẋ) to not depend explicitly on t. Plot (x, ẋ, t) curve, so (dx, dv, dt) = dt(v, f, 1) is the

tangent vector. Project to the (x, v) plane, and plot (v, f) to give the tangent vector field.
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For example, for the SHO, f = −x so the tangent vector field in the (x, v) plane is (v,−x),

i.e. the phase space motion is a circle. Discuss example in cell 1.6 of Chapter1.nb. It is

often useful to use p instead of ẋ (in simple cases, this is just a rescaling as p = mẋ). Plot

phase space motion for the solution of the undamped SHO vs the damped SHO.

• Non- dissipative systems have conserved energy and the flow in the (x, v) plane has

zero divergence. Hence the area in phase space is constant in time.

• Hamiltonian flows: H(x, p, t) with ẋ = ∂pH and ṗ = −∂xH. Discuss Ḣ vs ∂tH and

show that Ḣ = 0 if ∂tH = 0: this is conservation of energy if the system does not explicitly

depend on t. You will learn more about this in physics 110.

• Following Dubin 1.4.3, discuss Euler’s method for numerical solutions of differential

equations. First consider ḟ = f(t, v) e.g. for f(t, v) = t− v.
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