
5/15/18 Lecture outline

⋆ Reading: Zwiebach chapters 8 and 9.

• Continue where we left off last time: symmetry and conservation laws for the case of

Lorentz transformations. As we discussed, continuous symmetries on the worldsheet, δXµ

lead to conserved currents jα = ∂L
∂(∂αφa)δφ

a, satisfying ∂αj
α = 0, where α = 0, 1 → τ, σ,

and the corresponding worldsheet conserved charge is
∫

dσjτ . For δXµ = ǫµ transla-

tions, the charge is pµ =
∫

dσPτ
µ . Now continue with Lorentz symmetry, which comes

from the worldsheet symmetry δXµ = ǫµνXν , which is a symmetry if ǫµν = ǫ[µν], e.g.

δ(ηµνX
µXν) = 0. Discuss cases of spatial rotations and boosts, explain why both indeed

involve antisymmetric ǫµν . Lorentz symmetry is of course a symmetry of the string La-

grangian LNG = −T0

c

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 involve ηµν∂αX
µ∂βX

ν , since all Lorentz

vector indices are contracted via Lorentz scalar dot products.

The associated conserved currents are Mα
µν = XµPα

ν − (µ ↔ ν). The corresponding

charges Mµν =
∫

(Mτ
µνdσ are the angular momentum. We can also consider more generally

conserved charges Mµν [Γ] =
∫

Γ
(Mτ

µνdσ−Mσ
µνdτ). Note that the charges associated with

boosts are M0i = ctpi −
∫

dσX iPτ0, which can be interpreted as X i
cm(t) = −cM0i

E
+ t c

2pi

E
.

• Recall J = h̄α′E2, with [α′] = −2, which is the Regge trajectory observation of

the early ’70s.. Consider now a string rotating in 12 plane, with the EOM solved by

(as discussed last week): ~X = σ1

π
cos(πσ/σ1)(cos(πct/σ1), sin(πct/σ1)). So ~Pτ = T0

c2
~̇X =

T0

c
cos(πσ/σ1)(− sin(πct/σ1), cos(πct/σ1)). Find that the rotational angular momentum

has M12 =
∫ σ1

0
dσ(X1Pτ

2 −X2Pτ
1 ), which using above ~X(t, σ) and ~Pτ = T0

c2
∂t ~X, leads to

M12 = σ2
1T0/2πc, which is a constant as expected. Since σ1 = E/T0 and M12 = J , this

gives J = α′h̄E2, with T0 ≡ 1/2πα′h̄c. The string length is ℓs = h̄c
√
α′.

• Aside, for later: the string worldsheet analog of Sparticle ⊃
∫

qAµdx
µ is Sstring ⊃

−
∫

Σ
Bµν∂τX

µ∂σX
νdσdτ .

• As some review for the next topic, recall the light cone coordinates: a± = (a0 ±
a1)/

√
2, so a · b = −a−a+ − a+a− +

∑

I a
IbI , where I = 2, . . . runs over the transverse

space directions. Ugly, but can help quantize. Example from QM: in non-relativistic

case, get Schrodinger equation by writing H = ~p2/2m + V (x) and replacing H → ih̄ ∂
∂t

and ~p → −ih̄∇. In relativistic case, considering free particle for simplicity, have H =
√

(c~p)2 + (mc2)2 and ~p → −ih̄∇ would require understanding how to take the square-

root of an operator. This is what led Dirac to the Dirac equation for relativistic electrons,

and the start of quantum field theory. Very interesting and long story, but not the topic

of this class. We will avoid going there by the trick of the light cone.
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Write −p · p = m2 (setting c = 1) as 2p+p− =
∑

I p
IpI +m2. In the light cone, we

think of x+ as time. Then p− = Hlc = (
∑

I p
IpI + m2)/2p+. No need for square-root.

Looks similar to non-relativistic case.

• Use h̄ = c = 1 units. Recall [α′] = 1/[T0] = L2. Write

LNG = − 1

2πα′

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L
∂Ẋµ

= − 1

2πα′

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′

= − 1

2πα′

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.

which we simplified by picking static gauge.

• Generalize static gauge (to eventually get to light cone gauge). Consider e.g. gauge

nµX
µ = λτ for time-like nµ. Static gauge is nµ = (1, 0, . . . , 0). Vary, nµdX

µ = λdτ , so

nµ is orthogonal to the string tangent at constant τ . We want dXµ along the string to be

spacelike (or null at isolated points, e.g. the Neumann open string endpoints).
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