- ★ Reading: Zwiebach chapters 9 and 10.
- Continue where we left off last time: we saw that we can generalize static gauge to

$$n \cdot \mathcal{P}^{\sigma} = 0, \qquad n \cdot X = \beta \alpha'(n \cdot p)\tau, \qquad n \cdot p = \frac{2\pi}{\beta} n \cdot \mathcal{P}^{\tau},$$

where $\beta = 2$ for open strings and $\beta = 1$ for closed strings. These lead to

$$\dot{X} \cdot X' = 0 \qquad \dot{X}^2 + c^2 X'^2 = 0. \tag{1}$$

$$\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'}\dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{c^2}{2\pi\alpha'}X^{\mu'},\tag{2}$$

$$(\partial_{\tau}^2 - c^2 \partial_{\sigma}^2) X^{\mu} = 0. \tag{3}$$

The general solution of the linear equations (3) is a superposition of Fourier modes

$$X^{\mu}(\tau,\sigma) = x_0^{\mu} + 2\alpha' p^{\mu} \tau + i\sqrt{2\alpha'} \sum_{n=0}^{\infty} \frac{1}{n} \alpha_n^{\mu} e^{-in\tau} \cos n\sigma,$$

where $\alpha_{-n}^{\mu} \equiv \alpha_n^{\mu*}$ (to make X^{μ} real) and it's also convenient to define $\alpha_0^{\mu} \equiv \sqrt{2\alpha'}p^{\mu}$. Then

$$\dot{X}^{\mu} \pm X^{\mu'} = \sqrt{2\alpha'} \sum_{n=-\infty}^{\infty} \alpha_n^{\mu} e^{-in(\tau \pm \sigma)}.$$

• In light cone gauge take $n_{\mu}=(1/\sqrt{2},1/\sqrt{2},0,\ldots)$. Then $n\cdot X=X^+$ and $n\cdot p=p^+$, so our constraint gives $X^+=\beta\alpha'p^+\tau$ and $p^+=2\pi\mathcal{P}^{\tau+}/\beta$ (again, $\beta=2$ for open strings and $\beta=1$ for closed strings. Also note, $X'^+=0$ and $\dot{X}^+=\beta\alpha'p^+$); of course, p^+ is a constant of the motion. Since the constraints give $(\dot{X}\pm X')^2=-2(\dot{X}^+\pm X'^+)(\dot{X}^-\pm X'^-)+(\dot{X}^I\pm X'^I)^2=0$, we can write this as $\partial_{\tau}X^-\pm\partial_{\sigma}X^-=\frac{1}{\beta\alpha'}\frac{1}{2p^+}(\dot{X}^I\pm X^{I'})^2$, where I are the transverse directions. This leads to

$$\sqrt{2\alpha'}\alpha_n^- \equiv \frac{1}{p^+}L_n^\perp, \qquad L_n^\perp = \tfrac{1}{2}\sum_{m=-\infty}^\infty \alpha_{n-m}^I\alpha_m^I.$$

Note that the worldsheet coordinates dropped out. This means that there is no dynamics in X^- , other than the zero mode. For n=0, using $\alpha_0^- = \sqrt{2\alpha'}p^-$ get $2\alpha'p^+p^- = L_0^{\perp}$. Light cone gauge allows us to make \dot{X}^+ a constant, and to solve for the derivatives of X^- (without having to take a square root). Finally, note that the string has

$$M^2 = -p^2 = 2p^+p^- - P^Ip^I = \frac{1}{\alpha'} \sum_{n=1}^{\infty} \alpha_n^{I*} \alpha_n^I.$$

See that all classical states have $M^2 \geq 0$. Note that this is a continuous $M \geq 0$ classically, and only one state with M=0; neither would be good for using strings as elementary particles. As we will soon discuss, quantum effects cures both of these problems: the values of M will be quantized, and the states with M=0 will give the expected polarizations for a massless gauge field in the open string case, and for a gravity (plus extra stuff) in the closed string case.

• We will consider quantization of fields and then strings. As a warmup, consider classical scalar field theory, with $S = \int d^D x (-\frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2)$. The EOM is the Klein-Gordon equation

$$(\partial^2 - m^2)\phi = 0, \qquad \partial^2 \equiv -\frac{\partial^2}{\partial t^2} + \nabla^2$$

The Hamiltonian is $H = \int d^{D-1}x(\frac{1}{2}\Pi^2 + \frac{1}{2}(\nabla\phi)^2 + \frac{1}{2}m^2\phi^2)$, where $\Pi = \partial\mathcal{L}/\partial(\partial_0\phi) = \partial_0\phi$. Take e.g. D = 1 and get SHO with $q \to \phi$ and $m \to 1$ and $\omega \to m$.

Classical plane wave solutions: $\phi(t,\vec{x}) = ae^{-iEt+i\vec{p}\cdot\vec{x}} + c.c.$, where $E = E_p = \sqrt{\vec{p}^2 + m^2}$, and the +c.c. is to make ϕ real. Letting $\phi(x) = \int \frac{d^Dp}{(2\pi)^D} e^{ip\cdot x} \phi(p)$, the reality condition is $\phi(p)^* = \phi(-p)$ and the EOM is $(p^2 + m^2)\phi(p) = 0$.