
5/24/18 Lecture outline

⋆ Reading: Zwiebach chapters 9 and 10.

• Continue where we left off last time: we will consider quantization of fields and then

strings.

Recall from last time: classical scalar field theory, with S =
∫

dDx(−1
2
ηµν∂µφ∂νφ −

1
2m

2φ2). The EOM is the Klein-Gordon equation

(∂2 −m2)φ = 0, ∂2 ≡ − ∂2

∂t2
+ ∇2

The Hamiltonian is H =
∫

dD−1x( 12Π
2+ 1

2(∇φ)2+ 1
2m

2φ2), where Π = ∂L/∂(∂0φ) = ∂0φ.

Take e.g. D = 1 and get SHO with q → φ and m→ 1 and ω → m.

Classical plane wave solutions: φ(t, ~x) = ae−iEt+i~p·~x + c.c., where E = Ep =
√

~p2 +m2, and the +c.c. is to make φ real. Letting φ(x) =
∫

dDp
(2π)D

eip·xφ(p), the real-

ity condition is φ(p)∗ = φ(−p) and the EOM is (p2 +m2)φ(p) = 0.

• Now consider light cone gauge coordinates. Replace ∂2 → −2∂+∂− + ∂I∂I and

Fourier transform

φ(x+, x−, ~xT ) =

∫

dp+

2π

∫

dD−2~pT
(2π)D−2

e−ix−p++i~xT ·~pT φ(x+, p+, ~pT ).

Then the EOM becomes

(i
∂

∂x+
− 1

2p+
(pIpI +m2))φ(x+, p+, ~pT ) = 0.

Looks like the non-relativistic Schrodinger equation, with x+ playing the role of time and

p+ playing the role of mass, even though it is secretly relativistic.

• Let’s quantize! Replace φ with an operator. Consider

φ(t, ~x) =
1√
V

∑

~p

1
√

2Ep

(a~p(t)e
i~p·~x + a†~p(t)e

−ip·x).

If we’re in a spatial box, then piLi = 2πni. Compute the energy to find

H =
∑

~p>0

(
1

2Ep
ȧ†pȧp(t) +

1
2
Epa

†
pap) =

∑

~p

Epa
†
~pa~p.

where the EOM were used in the last step: a~p(t) = a~pe
−iEpt + a†−~pe

iEpt. Also,

~P =
∑

~p

~pa†~pa~p.
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As expected, H and ~P are independent of t. We quantize this as a (complex) SHO for

each value of ~p:

[ap, a
†
k] = δp,k, [ap, ak] = [a†p, a

†
k] = 0.

and interpret the above H and ~P has saying that a†±~p is a creation operator, creating a

state with energy Ep =
√

~p2 +m2 and spatial momentum ~p from the vacuum |Ω〉. (Note

that we dropped the 2 · 1
2
Ep groundstate energy contribution, for no good reason. This is

the road to the unresolved cosmological constant problem, so we won’t go there.)

• Now consider the Maxwell field Aµ and quantize → photons. In the vacuum, setting

jµ = 0, we have ∂µF
νµ = 0, which implies ∂2Aµ − ∂µ(∂ · A) = 0. Massless. Fourier

transform to Aµ(p), with Aµ(−p) = Aµ(p)∗, and get (p2ηµν − pµpν)Aν(p) = 0. Gauge

invariance δAµ(p) = ipµǫ(p). In light cone gauge, since p+ 6= 0, can set A+(p) = 0. Then

get A− = (pIAI)/p+, i.e. A− is not an independent d.o.f., but rather constrained, and the

Maxewell EOM gives p2Aµ(p) = 0. For p2 6= 0, require Aµ(p) = 0, and for p2 = 0 get that

there are D − 2 physical transverse d.o.f., the AI(p). The one-photon states are

D−1
∑

I=2

ξIa
I†
p+,pT

|ω〉.

• Gravitational light cone gauge conditions: h++ = h+− = h+I = 0. Other light

cone components are constrained. So physical d.o.f. are specified by a traceless symmetric

matrix hIJ in the D − 2 transverse directions. So 1
2D(D − 3) d.o.f..

• Recall the relativistic point particle, with S =
∫

Ldτ and L = −m
√
−ẋ2, where ≡̇ d

dτ
.

(τ is taken to be dimensionless.) The momentum is pµ = ∂L/∂ẋµ = mẋµ/
√
−ẋ2 and the

EOM is ṗµ = 0. In light cone gauge we take x+ = p+τ/m2. Then p+ = mẋ+/
√
−ẋ2 and

the light cone gauge condition implies ẋ2 = −1/m2, so pµ = m2ẋµ. Also, p2 + m2 = 0

yields p− = (pIpI +m2)/2p+, which is solved for p− and then ẋ− = p−/m2 is integrated to

x− = p−τ/m2+x−0 . Also, xI = xI0+p
Iτ/m2. The dynamical variables are (xI , x−0 , p

I , p+).

• Heisenberg picture: put time dependence in the operators rather than the states, with

[q(t), p(t)] = i and

i
d

dt
O(t) = i

∂O
∂t

+ [O, H].

For time independent Hamiltonian, we have |ψ(t)〉S = e−iHt|ψ〉H and OH = eiHtOSe
−iHt.

• Quantize the point particle in light cone gauge by taking the independent operators

(xI , x−0 , p
I , p+), with [xI , pJ ] = iηIJ and [x−0 , p

+] = iη−+ = −i. These commutators

are for either S or H picture, with the operators being functions of τ in the H picture.
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The remaining variables are defined by x+(τ) = p+τ/m2, x−(τ) = x−0 + p−τ/m2, p− =

(pIpI +m2)/2p+ (the first two are explicitly τ dependent even in the S picture).

The Hamiltonian is ∼ p−, which generates ∂
∂x+ translations. Since ∂

∂τ = p+

m2

∂
∂x+ ↔

p+

m2 p
− the Hamiltonian is

H =
p+p−

m2
=

1

2m2
(pIpI +m2).

Verify e.g.

i
d

dτ
pµ = [pµ, H] = 0, i

dxI

dτ
= [xI , H] = i

pI

m2
,

reproducing the correct EOM. Likewise, verify ẋ−0 = 0 and ẋ+ = ∂τx
+ = p+/m2.

The momentum eigenstates are labeled by |p+, pI〉 and these are also energy eigenstates,

H|p+, pI〉 = 1
2m2 (p

IpI +m2)|p+, pI〉.
• Connect the quantized point particle with the excitations of scalar field theory via

|p+, pI〉 ↔ a†
p+,pI |Ω〉.

The S.E. of the quantum point particle wavefunction maps to the classical scalar field

equations, e.g. in light cone gauge:

(i∂τ − 1

2m2
(pIpI +m2))φ(τ, p+, pI) = 0

is either the quantum S.E. of the point particle or the classical field equations of a scalar

field.

(Aside: the light cone is here used as a trick to get to “second quantization.” “First

quantization” is what you learn the first time you study (non-relativisitic) QM: replace

coordinates and momenta with operators, and Poisson brackets with commutators. Second

quantization is for field theory, replacing the fields and their conjugate momenta with

operators, and their PBs with commutators, leading to multi-particle states. Here light-

cone first quantization of the point particle leads to a Schrodinger equation that agrees

with the classical EOM of a light-cone field theory, which we then need to quantize again

to get second quantization.

• Lorentz transformations correspond to the inf. transformations δxµ = ǫµνxν , and

the corresponding conserved Noether charges are the generalized angular momentaMµν =

xµpν −xνpµ. These generate rotations and boosts. Have e.g. [Mµν , xρ] = iηµρxν − iηνρxµ

and [Mµν ,Mρσ] = iηµρMνσ±(perms).
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In light cone coordinates, have M IJ , M±I , M+−, with e.g. [M+−,M+I ] = iM+I and

[M−I ,M−J ] = 0. There are some ordering issues for some of these, where operators which

don’t commute need to be replaced with symmetrized averages, e.g. M+− = −1
2 (x

−
0 p

+ +

p+x−0 ) and M
−I = x−0 p

I − 1
2 (x

I
0p

− + p−xI0).

• Open string. Imposed constraints (Ẋ ±X ′)2 = 0 to get

Pσµ = − 1

2πα′
Xµ′

, Pτµ =
1

2πα′
Ẋµ.

In light cone gauge, much as with the point particle, the independent variables are

(XI , (σ)x−0 ,PτI(σ), p+). In the H picture the capitalized ones depend (implicitly) on τ

too. The commutation relations are

[XI(σ),PτJ(σ′)] = iηIJδ(σ − σ′), [x−0 , p
+] = −i.

The Hamiltonian is taken to be

H = 2α′p+p− = 2α′p+
∫ π

0

dσPτ− = πα′

∫ π

0

dσ(PτIPτI +XI′

XI′

(2πα′)−2)

Can write H = L⊥
0 since L⊥

0 = 2α′p+p−.

This H properly yields the expected time derivatives, e.g. ẊI = 2πα′PτI .

Recall the solution with N BCs:

XI(τ, σ) = xI0 +
√
2α′αI

0τ + i
√
2α′

∑

n6=0

1

n
αI
n cosnσe−inτ . (1)

The needed commutators are ensured by

[αI
m, α

J
n] = mηIJδn+m,0.

Also, as before, we define αI
0 ≡

√
2α′pI . Now define αµ

n>0 =
√
naµn and αµ

−n = aµ∗n
√
n to

rewrite the above as

[aIm, a
J†

] = δm,nη
IJ . (2)

• The transverse light cone coordinates can be described by

Sl.c. =

∫

dτdσ
1

4πα′
(ẊIẊI −XI′

XI′

).

Gives correct PτI = ∂L/∂ẊI and correct H =
∫

dσ(PτIẊI − L).
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WritingXI(τ, σ) = qI(τ)+2
√
α′

∑∞
n=1 q

I
N (τ)n−1/2 cosnσ and plugging into the action

above gives

S =

∫

dτ [
1

4α′
q̇I q̇I +

∞
∑

n=1

(
1

2n
q̇Inq̇

I
n − n

2
qInq

I
n)]

and

H = α′pIpI +

∞
∑

n=1

n

2
(pInp

I
n + qInq

I
m).

A bunch of harmonic oscillators. Relate to (1) and (2), showing that the am can be

interpreted as the usual harmonic oscillator annihilation operators.

• X+(τσ) = 2α′p+τ =
√
2α′α+

0 τ . For X− recall expansion, with
√
2α′α−

n = 1
p+L

⊥
n ,

where L⊥
n ≡ 1

2

∑

p α
I
n−pα

I
p is the transverse Virasoro operator. There is an ordering ambi-

guity here, only for L⊥
0 :

L⊥
0 = 1

2α0α0 +
1
2

∞
∑

p=1

αI
−pα

I
p +

1
2

∞
∑

p=1

αI
pα

I
−p.
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