5/29/18 Lecture outline

* Reading: Zwiebach chapters 10 and 11.
- Last time: quantized the Klein-Gordon field, replacing ϕ with an operator. Consider

$$
\phi(t, \vec{x})=\frac{1}{\sqrt{V}} \sum_{\vec{p}} \frac{1}{\sqrt{2 E_{p}}}\left(a_{\vec{p}}(t) e^{i \vec{p} \cdot \vec{x}}+a_{\vec{p}}^{\dagger}(t) e^{-i p \cdot x}\right) .
$$

If we're in a spatial box, then $p_{i} L_{i}=2 \pi n_{i}$. Compute the energy to find

$$
H=\sum_{\vec{p}>0}\left(\frac{1}{2 E_{p}} \dot{a}_{p}^{\dagger} \dot{a}_{p}(t)+\frac{1}{2} E_{p} a_{p}^{\dagger} a_{p}\right)=\sum_{\vec{p}} E_{p} a_{\vec{p}}^{\dagger} a_{\vec{p}} .
$$

where the EOM were used in the last step: $a_{\vec{p}}(t)=a_{\vec{p}} e^{-i E_{p} t}+a_{-\vec{p}}^{\dagger} e^{i E_{p} t}$. Also,

$$
\vec{P}=\sum_{\vec{p}} \vec{p} a_{\vec{p}}^{\dagger} a_{\vec{p}}
$$

As expected, H and \vec{P} are independent of t. We quantize this as a (complex) SHO for each value of \vec{p} :

$$
\left[a_{p}, a_{k}^{\dagger}\right]=\delta_{p, k}, \quad\left[a_{p}, a_{k}\right]=\left[a_{p}^{\dagger}, a_{k}^{\dagger}\right]=0 .
$$

and interpret the above H and \vec{P} has saying that $a_{ \pm \vec{p}}^{\dagger}$ is a creation operator, creating a state with energy $E_{p}=\sqrt{\vec{p}^{2}+m^{2}}$ and spatial momentum \vec{p} from the vacuum $|\Omega\rangle$. Note that we dropped the $2 \cdot \frac{1}{2} E_{p}$ groundstate energy contribution, for no good reason. This is a contribution to the vacuum energy of empty space, and it is divergent upon summing over all p. This zero point energy is important (only) for gravity, and a contribution to the cosmological constant. Since this is an unresolved problem, we won't discuss it further.

- Now consider the Maxwell field A^{μ} and quantize \rightarrow photons. In the vacuum, setting $j^{\mu}=0$, we have $\partial_{\mu} F^{\nu \mu}=0$, which implies $\partial^{2} A^{\mu}-\partial^{\mu}(\partial \cdot A)=0$. Massless. Fourier transform to $A^{\mu}(p)$, with $A^{\mu}(-p)=A^{\mu}(p)^{*}$, and get $\left(p^{2} \eta^{\mu \nu}-p^{\mu} p^{\nu}\right) A_{\nu}(p)=0$. Gauge invariance $\delta A_{\mu}(p)=i p_{\mu} \epsilon(p)$. In light cone gauge, since $p^{+} \neq 0$, can set $A^{+}(p)=0$. Then get $A^{-}=\left(p^{I} A^{I}\right) / p^{+}$, i.e. A^{-}is not an independent d.o.f., but rather constrained, and the Maxewell EOM gives $p^{2} A^{\mu}(p)=0$. For $p^{2} \neq 0$, require $A^{\mu}(p)=0$, and for $p^{2}=0$ get that there are $D-2$ physical transverse d.o.f., the $A^{I}(p)$. The one-photon states are

$$
\sum_{I=2}^{D-1} \xi_{I} a_{p^{+}, p_{T}}^{I \dagger}|\omega\rangle .
$$

Gravitational light cone gauge conditions: $h^{++}=h^{+-}=h^{+I}=0$. Other light cone components are constrained. The equations of motion, with $p_{+} \neq 0$, imply that $h^{i j} \delta_{I J}=0$. So physical d.o.f. are specified by a traceless symmetric matrix $h^{I J}$ in the $D-2$ transverse directions. So $\frac{1}{2} D(D-3)$ d.o.f..

- Recall the relativistic point particle, with $S=\int L d \tau$ and $L=-m \sqrt{-\dot{x}^{2}}$, where $\doteq \frac{d}{d \tau}$. (τ is taken to be dimensionless.) The momentum is $p_{\mu}=\partial L / \partial \dot{x}^{\mu}=m \dot{x}_{\mu} / \sqrt{-\dot{x}^{2}}$ and the EOM is $\dot{p}_{\mu}=0$. In light cone gauge we take $x^{+}=p^{+} \tau / m^{2}$. Then $p^{+}=m \dot{x}^{+} / \sqrt{-\dot{x}^{2}}$ and the light cone gauge condition implies $\dot{x}^{2}=-1 / m^{2}$, so $p_{\mu}=m^{2} \dot{x}_{\mu}$. Also, $p^{2}+m^{2}=0$ yields $p^{-}=\left(p^{I} p^{I}+m^{2}\right) / 2 p^{+}$, which is solved for p^{-}and then $\dot{x}^{-}=p^{-} / m^{2}$ is integrated to $x^{-}=p^{-} \tau / m^{2}+x_{0}^{-}$. Also, $x^{I}=x_{0}^{I}+p^{I} \tau / m^{2}$. The dynamical variables are $\left(x^{I}, x_{0}^{-}, p^{I}, p^{+}\right)$.

