5/29/18 Lecture outline

- \star Reading: Zwiebach chapters 10 and 11.
- Last time: quantized the Klein-Gordon field, replacing ϕ with an operator. Consider

$$\phi(t, \vec{x}) = \frac{1}{\sqrt{V}} \sum_{\vec{p}} \frac{1}{\sqrt{2E_p}} (a_{\vec{p}}(t)e^{i\vec{p}\cdot\vec{x}} + a_{\vec{p}}^{\dagger}(t)e^{-ip\cdot x}).$$

If we're in a spatial box, then $p_i L_i = 2\pi n_i$. Compute the energy to find

$$H = \sum_{\vec{p}>0} \left(\frac{1}{2E_p} \dot{a}_p^{\dagger} \dot{a}_p(t) + \frac{1}{2} E_p a_p^{\dagger} a_p\right) = \sum_{\vec{p}} E_p a_{\vec{p}}^{\dagger} a_{\vec{p}}.$$

where the EOM were used in the last step: $a_{\vec{p}}(t) = a_{\vec{p}}e^{-iE_{p}t} + a^{\dagger}_{-\vec{p}}e^{iE_{p}t}$. Also,

$$\vec{P} = \sum_{\vec{p}} \vec{p} a_{\vec{p}}^{\dagger} a_{\vec{p}}.$$

As expected, H and \vec{P} are independent of t. We quantize this as a (complex) SHO for each value of \vec{p} :

$$[a_p, a_k^{\dagger}] = \delta_{p,k}, \qquad [a_p, a_k] = [a_p^{\dagger}, a_k^{\dagger}] = 0.$$

and interpret the above H and \vec{P} has saying that $a_{\pm\vec{p}}^{\dagger}$ is a creation operator, creating a state with energy $E_p = \sqrt{\vec{p}^2 + m^2}$ and spatial momentum \vec{p} from the vacuum $|\Omega\rangle$. Note that we dropped the $2 \cdot \frac{1}{2}E_p$ groundstate energy contribution, for no good reason. This is a contribution to the vacuum energy of empty space, and it is divergent upon summing over all p. This zero point energy is important (only) for gravity, and a contribution to the cosmological constant. Since this is an unresolved problem, we won't discuss it further.

• Now consider the Maxwell field A^{μ} and quantize \rightarrow photons. In the vacuum, setting $j^{\mu} = 0$, we have $\partial_{\mu}F^{\nu\mu} = 0$, which implies $\partial^{2}A^{\mu} - \partial^{\mu}(\partial \cdot A) = 0$. Massless. Fourier transform to $A^{\mu}(p)$, with $A^{\mu}(-p) = A^{\mu}(p)^{*}$, and get $(p^{2}\eta^{\mu\nu} - p^{\mu}p^{\nu})A_{\nu}(p) = 0$. Gauge invariance $\delta A_{\mu}(p) = ip_{\mu}\epsilon(p)$. In light cone gauge, since $p^{+} \neq 0$, can set $A^{+}(p) = 0$. Then get $A^{-} = (p^{I}A^{I})/p^{+}$, i.e. A^{-} is not an independent d.o.f., but rather constrained, and the Maxewell EOM gives $p^{2}A^{\mu}(p) = 0$. For $p^{2} \neq 0$, require $A^{\mu}(p) = 0$, and for $p^{2} = 0$ get that there are D - 2 physical transverse d.o.f., the $A^{I}(p)$. The one-photon states are

$$\sum_{I=2}^{D-1} \xi_I a_{p^+,p_T}^{I\dagger} |\omega\rangle$$

Gravitational light cone gauge conditions: $h^{++} = h^{+-} = h^{+I} = 0$. Other light cone components are constrained. The equations of motion, with $p_+ \neq 0$, imply that $h^{ij}\delta_{IJ} = 0$. So physical d.o.f. are specified by a traceless symmetric matrix h^{IJ} in the D-2 transverse directions. So $\frac{1}{2}D(D-3)$ d.o.f.

• Recall the relativistic point particle, with $S = \int Ld\tau$ and $L = -m\sqrt{-\dot{x}^2}$, where $\doteq \frac{d}{d\tau}$. (τ is taken to be dimensionless.) The momentum is $p_{\mu} = \partial L/\partial \dot{x}^{\mu} = m\dot{x}_{\mu}/\sqrt{-\dot{x}^2}$ and the EOM is $\dot{p}_{\mu} = 0$. In light cone gauge we take $x^+ = p^+\tau/m^2$. Then $p^+ = m\dot{x}^+/\sqrt{-\dot{x}^2}$ and the light cone gauge condition implies $\dot{x}^2 = -1/m^2$, so $p_{\mu} = m^2\dot{x}_{\mu}$. Also, $p^2 + m^2 = 0$ yields $p^- = (p^I p^I + m^2)/2p^+$, which is solved for p^- and then $\dot{x}^- = p^-/m^2$ is integrated to $x^- = p^-\tau/m^2 + x_0^-$. Also, $x^I = x_0^I + p^I \tau/m^2$. The dynamical variables are (x^I, x_0^-, p^I, p^+) .