* Reading: Zwiebach chapters 1 and 2.
- Last time: Curious history of string theory: originally developed to explain observed spectrum of mesons, e.g. $M^{2}=(J+a) / \alpha^{\prime}$.

But found that open strings always give massless spin 1 objects, and closed strings always give massless spin 2 objects. Mesons aren't like that. But massless spin 1 objects could be the photon and gluons - good! And massless spin 2 object could be the graviton even better - Michael Green (Cambridge) and John Schwarz (Caltech) recycled the slightly off theory of mesons into a theory of quantum gravity! Mesons are described instead by QCD. (Still interest in QCD effective string theory.)

- Metric convention (mostly plus convention...sigh..) $x^{\mu}=(c t, x, y, z), x_{\mu}=$ $(-c t, x, y, z)=\eta_{\mu \nu} x^{\mu}, \eta_{\mu \nu} \eta^{\nu \lambda}=\delta_{\mu}^{\lambda}$. Define $d s^{2}=-d x^{\mu} d x_{\mu}$. For 4-vectors $a^{\mu}=\left(a^{0}, \vec{a}\right)$ then $a_{\mu}=\left(a_{0}=-a^{0}, \vec{a}\right)$. Define 4 -vector dot products $a \cdot b \equiv a^{\mu} b^{\nu} \eta_{\mu \nu}=a^{\mu} b_{\mu}=a^{\nu} b_{\nu}=$ $-a^{0} b^{0}+\vec{a} \cdot \vec{b}$. So $d s^{2} \equiv-d x \cdot d x$ in this convention (sigh...).
- Δs^{2} for time-like, light-like, space-like separated events. Statement of causality principle: cause's effects only in the time-like future.
- Statement of relativity principle: physics is indistinguishable among all inertial frames. If one frame is inertial, the other inertial frames have linearly related coordinates, $x^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{\nu} x^{\nu}$, where the transformations must preserve $d s^{2}=0$; that is enough to show that they preserve any $d s^{2}=d s^{\prime 2}$; that is enough to show that they preserve all 4 -scalar products. So $a \cdot b=a^{\prime} \cdot b^{\prime}$. This restricts the Lorentz transformations: if we write $\eta_{\mu \nu}$ as a matrix, the Lorentz transformations satisfy $\eta=\Lambda^{T} \eta \Lambda$. The Lorentz transformations consist of rotations and boosts (for a total of $3+3=6$ independent generators). For the case of boosts, e.g. $\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}\gamma & -\gamma \beta \\ -\gamma \beta & \gamma\end{array}\right)\binom{c t}{x}$, with $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ and $\beta=v / c$.

Aside on the Lorentz transformations (question from lecture): writing transformation in matrix notation, need to account for upper vs lower indices, e.g. $\eta^{\mu \nu}$ vs $\eta_{\mu \nu}$.

- Light cone coordinates: $x^{ \pm}=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{1}\right)$. The bad: spoils rotational symmetry. The good: will make it easier to quantize string theory (avoids having to discuss here more advanced alternatives, which do not require going to the light cone coordinates). $-d s^{2}=-2 d x^{+} d x^{-}+d x_{2}^{2}+d x_{3}^{2}=-\widehat{\eta}_{\mu \nu} d x^{\mu} d x^{\nu} . a_{ \pm}=-a^{\mp}$.
- $p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$, with $p_{\mu} p^{\mu}=-m^{2} c^{2}$. p^{μ} transforms as a Lorentz 4-vector, $p^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} p^{\nu}$. Proper time: $d s^{2}=c^{2} d t_{p}^{2}=c^{2} d t^{2}\left(1-\beta^{2}\right) . u^{\mu}=c d x^{\mu} / d s=d x^{\mu} / d t_{p}=$ $\gamma(c, \vec{v})$, and $u_{\mu} u^{\mu}=-c^{2}$. A massive point particle has $p^{\mu}=m u^{\mu}$. Massless particles, like the photon, have p^{μ} with $p^{\mu} p_{\mu}=0$.
- Quantum mechanics: replace $p^{\mu}=(H / c, \vec{p}) \rightarrow-i \hbar \partial^{\mu}$. Free particle wavefunction $\psi \sim \exp (i p \cdot x / \hbar) ; p_{\mu} x^{\mu} \equiv p \cdot x$ is Lorentz invariant.

