\star Reading: Zwiebach chapters 1 and 2 .

- Last time: Statement of relativity principle: physics is indistinguishable among all inertial frames. If one frame is inertial, all frames moving relative to that at a constant velocity are also inertial. Related by $x^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} x^{\nu}$ where $\Lambda^{T} \eta \Lambda=\eta$, where η is the metric, chosen to have mostly plus convention. All 4 -vectors transform the same way: $b^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} b^{\nu}$. A tensor transforms as $T^{\mu^{\prime} \nu^{\prime}}=\Lambda_{\kappa}^{\mu^{\prime}} \Lambda_{\sigma}^{\nu^{\prime}} T^{\kappa \sigma}$. Can contract or raise or lower indices with $\eta_{\mu \nu}$, e.g. $a^{\mu} b^{\nu} \eta_{\mu \nu}=-a^{0} b^{0}+\vec{a} \cdot \vec{b}$ and $T_{\mu}^{\mu}=-T^{00}+\delta_{i j} T^{i j}$ are 4scalars. 4-scalars are invariant under Lorentz transformation. The proper time element $d \tau=\sqrt{-d x^{\mu} d x_{\mu} / c^{2}}$ is a 4-scalar. $u^{\mu}=d x^{\mu} / d \tau$ is the velocity 4 -vector, and $d^{2} x^{\mu} / d \tau^{2}$ is the acceleration 4 -vector. The statement of relativity requires that all formulas relate quantities that transform the same way, for example $\vec{F}=m \vec{a}$ can fit with relativity if it becomes a 4 -vector equation: $f^{\mu}=m d p^{\mu} / d \tau$ (the time component here relates power to the time derivative of energy).
$p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$, with $p_{\mu} p^{\mu}=-m^{2} c^{2} . p^{\mu}$ transforms as a Lorentz 4-vector, $p^{\mu^{\prime}}=$ $\Lambda_{\nu}^{\mu^{\prime}} p^{\nu}$. Proper time: $d s^{2}=c^{2} d t_{p}^{2}=c^{2} d t^{2}\left(1-\beta^{2}\right) . u^{\mu}=c d x^{\mu} / d s=d x^{\mu} / d t_{p}=\gamma(c, \vec{v})$, and $u_{\mu} u^{\mu}=-c^{2}$. A massive point particle has $p^{\mu}=m u^{\mu}$. Massless particles, like the photon, have p^{μ} with $p^{\mu} p_{\mu}=0$.
- Quantum mechanics: replace $p^{\mu}=(H / c, \vec{p}) \rightarrow-i \hbar \partial^{\mu}$. Free particle wavefunction $\psi \sim \exp (i p \cdot x / \hbar) ; p_{\mu} x^{\mu} \equiv p \cdot x$ is Lorentz invariant.
- Light cone coordinates: $x^{ \pm}=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{1}\right)$. The bad: spoils rotational symmetry. The good: will make it easier to quantize string theory (avoids having to discuss here more advanced alternatives, which do not require going to the light cone coordinates). $-d s^{2}=-2 d x^{+} d x^{-}+d x_{2}^{2}+d x_{3}^{2}=-\widehat{\eta}_{\mu \nu} d x^{\mu} d x^{\nu} . a_{ \pm}=-a^{\mp}$. Take $p^{ \pm}=\frac{1}{\sqrt{2}}\left(p^{0} \pm p^{1}\right)=-p_{\mp}$. So $i \hbar \partial_{x^{+}} \rightarrow-p_{+}=E_{l c} / c$, i.e. $p^{-}=E_{l c} / c$.
- Extra (spacelike) dimensions, e.g. 2 extra dimensions: $-d s^{2}=-c^{2} d t^{2}+\sum_{i=1}^{5}\left(d x^{i}\right)^{2}$. Consider one extra space dimension, taken to be a circle, $x \sim x+2 \pi R$. Now consider $(x, y) \sim(x+2 \pi R, y) \sim(x, y+2 \pi R)$; gives a torus. Orbifold, e.g. $z \sim e^{i \pi i / N} z$, gives a cone (singular at fixed point).
- Recall QM: $\left[x^{i}, p_{j}\right]=i \hbar \delta_{j}^{i}$. Particle in square well box of size $a: E=(n \pi / a)^{2} / 2 m$. Now particle in periodic box, $x_{4} \sim x_{4}+2 \pi R$. The other directions, x^{μ}, are given by some standard Hamiltonian, e.g. the hydrogen atom, which we'll call $H_{4 d}$. So $H_{5 d}=$ $H_{4 d}+\widehat{p}_{4}^{2} / 2 m$, with $\widehat{p}_{4}=-i \hbar \partial_{x_{4}}$ in position space. The 4 d energy eigenstates are then given by separation of variables to be $\psi_{E_{5 d}}\left(\vec{x}, x_{4}\right)=\psi_{E_{4 d}}(\vec{x}) \frac{1}{\sqrt{2 \pi R}} e^{i \ell x_{4} / R}$, with ℓ an integer, and $\psi_{E_{4 d}}$ is an energy eigenstate of the 4 d problem. So $E_{5 d}=E_{4 d}+\ell^{2} / 2 m R^{2}$. For R small, the low energy states are simply those with $\ell=0$, and the extra dimension is unseen.

