
4/12/18 Lecture outline

⋆ Reading: Zwiebach chapter 3.

• Use units where Maxwell’s equations are ∇ × ~E = −
1
c∂t

~B, ∇ · ~B = 0, ∇ · ~E = ρ,

∇ × ~B = 1
c
~j + 1

c∂t
~E. The first two equations can be solved by introducing the scalar and

vector potential: ~B = ∇× ~A, ~E = −
1
c
∂t ~A− ∇φ. Gauge invariance: all physics (including

~E and ~B) invariant under

φ→ φ−
1

c

∂f

∂t
, ~A→ ~A+ ∇f, (1)

for an arbitrary function f(t, ~x). This initially dull sounding invariance takes a fundamental

role in modern high energy physics: such local (because f can vary locally over space-time)

gauge symmetries are in direct correspondence with forces!

• Maxwell’s equations in relativistic form. Like last time, xµ = (ct, ~x) and also use

∂µ = (c∂t, ∇) (and thus ∂µ = (−c∂t, ∇)). ~E and ~B combine into an antisymmetric,

2-index, 4-tensor Fµν = −Fνµ, via F0i = −Ei and Fij = ǫijkB
k, i.e.

Fµν =







0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0






.

As usual, we can raise and lower indices with ηµν , e.g. F
µν = ηµληνσFλσ and with the

book’s sign convention this gives a minus sign each time a time component is raised or

lowered. So F 0i = −F0i and F
ij = Fij , where i and j refer to the spatial components, i.e.

the matrix Fµν is similar to that above, but with ~E → −~E.

Under Lorentz transformations, xµ
′

= Λµ′

νx
ν , the electric and magnetic fields trans-

form as Fµ′ν′

= Λµ′

σΛ
ν′

ρF
σρ. Sources combine into a 4-vector as jµ = (cρ,~j), and charge

conservation is the Lorentz-invariant equation ∂µj
µ = 0.

The Lorentz force law is fµ
E&M = ±qFµνuν (go through the exercise of checking

the sign on the board). Maxwell’s equations in relativistic form are ∂[µFρσ] = 0, and

∂λF
µλ = 1

c j
µ (this convention, with indices not next to each other contracted, is peculiar

to the (− + ++) choice of ηµν), which exhibits that they transform covariantly under

Lorentz transformations.

The scalar and vector potential combine to the 4-vector Aµ = (φ, ~A) and the first two

Maxwell equations are solved via Fµν = ∂[µAν]. The gauge invariance is Aµ
→ Aµ + ∂µf .

E.g. Lorentz gauge: ∂µA
µ = 0. Physics is independent of choice of gauge, but some are
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sometimes more convenient than others along the way, depending on what’s being done.

In Lorentz gauge, the remaining Maxwell equations are ∂µ∂
µAν = −

1
c j

ν (still some gauge

freedom). In empty space we set jµ = 0 and the plane wave solutions are Aµ = ǫµ(p)eip·x,

where p2 = 0 (massless) and p · ǫ = 0. Can still shift ǫµ → ǫµ + αpµ, so 2 independent

photon polarizations ǫµ.

• The action for a relativistic point particle of mass m is S = −mc
∫

ds =

−mc2
∫

dt
√

1− v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2, both of

which are constants of the motion (thanks to the time and spatial translation invariance).

When the particle is charged and in the presence of electric and magnetic fields, there

is the new term in the action

S =

∫

(−mcds+
q

c
Aµdx

µ), (2)

which is manifestly relativistically invariant (and also repparameterization) invariant. Note

also that, under a gauge transformation, we have S → S + qf
c , which does not affect the

equations of motion (just as changing the Lagrangian by a total time derivative does not).

The lagrangian is thus L = −mc
√

1− ~v2/c2 + q
c
~v · ~A− qφ. The momentum conjugate

to ~r is ~P = ∂L/∂~v = m~v/
√

1− ~v2/c2 + q
c
~A. The Hamiltonian is H = ~v · ~P − L =

√

m2c4 + c2( ~P −
q
c
~A)2+qφ. The equations of motion can be written as d2xµ

dτ2 = q
mc
Fµν

dxν

dτ
.

In the non-relativistic limit we have H = 1
2m( ~P −

q
c
~A)2 + qφ, where ~P −

q
c
~A = m~v.

• In QM, gauge transformation Aµ
→ Aµ + ∂µf accompanies giving an overall, local

phase to the QM wavefunction ψ → eiqf/h̄cψ, where q is the electric charge of the field.
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