
4/17/18 Lecture outline

⋆ Reading: Zwiebach chapter 3.

• The action for a relativistic point particle of mass m is S = −mc
∫
ds =

−mc2
∫
dt
√

1− v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2, both of

which are constants of the motion (thanks to the time and spatial translation invariance).

When the particle is charged and in the presence of electric and magnetic fields, there

is the new term in the action

S =

∫
(−mcds+

q

c
Aµdx

µ), (1)

which is manifestly relativistically invariant (and also reparameterization) invariant. Note

also that, under a gauge transformation, we have S → S + qf
c
|endpoints, which does not

affect the equations of motion (just as changing the Lagrangian by a total time derivative

does not).

The lagrangian is thus L = −mc
√

1− ~v2/c2 + q
c~v ·

~A− qφ. The momentum conjugate

to ~r is ~P = ∂L/∂~v = m~v/
√
1− ~v2/c2 + q

c
~A. The Hamiltonian is H = ~v · ~P − L =√

m2c4 + c2( ~P − q
c
~A)2+qφ. The equations of motion can be written as d2xµ

dτ2 = q
mcFµν

dxν

dτ .

In the non-relativistic limit we have H = 1
2m( ~P − q

c
~A)2 + qφ, where ~P − q

c
~A = m~v.

• In QM, gauge transformation Aµ → Aµ + ∂µf accompanies giving an overall, local

phase to the QM wavefunction ψ → e−iqf/h̄cψ, where q is the electric charge of the field.

Can form covariant derivatives Dµψ = (∂µ + i(q/h̄c)Aµ)ψ so Dµψ → e−iqf/h̄cDµψ

under a gauge transformation.

• Maxwell theory and gravity in general D spacetime dimensions. ds2flat = −c2dt2 +

dx21 + . . . dx2D−1. For any D, we have the same Maxwell’s equations, so Fµν = ∂[µAν]

and ∂µF
µν = 1

c j
ν . A point charge q has ρ = qδD−1(~x) and makes an electric field with

∇ · ~E = qδd(~x) in a world with D = d + 1 spacetime dimension (the +1 is the time

dimension, and there are d spatial directions), so
∫
Sd−1

~E · d~a = q. Thus ~E = E(r)r̂ with

E(r) = q/rd−1vol(Sd−1), where vol(Sd−1) = 2πd/2/Γ(d/2) is the volume of a unit sphere1

surrounding the charge. Finally, we get that a point charge makes electric field given by

E(r) = Γ(d/2)q/2πd/2rd−1. For d = 3, get E(r) = q/4πr2, good.

• What about gravity in other D? In 4d, we have gravitational potential given by

V
(4)
g = −GM/r, which solves ∇2V

(D)
g = 4πG(D)ρm. This is the gravitational potential

1 To show this, use
∫ ∏d

i=1
dxie

−x2

i = πd/2 =
∫
drrd−1dΩd−1e

−r2 = Ωd−1
1

2

∫
∞

0
dttd/2−1e−t =

1

2
Ωd−1Γ(d/2).

1



equation in any spacetime dimension, with gravitational force taken to be F = −m∇Vg.

In h̄ = c = 1 units, get G = ℓD−2
P in D spacetime dimensions. Get GD = GVC , where VC

is the compactification volume.

• The electric and magnetic fields themselves have a lagrangian, with action

S =

∫
dDxL, L = −

1

4
FµνF

µν +
1

c
Aµj

µ.

The two Maxwell’s equations expressing absence of magnetic monopoles are, again, solved

by setting Fµν = ∂[µAν]. The other two Maxwell’s equations then come from the Euler

-Lagrange equations of the above action upon varying Aµ → Aµ + δAµ: the action is

stationary when

∂ν
∂L

∂(∂νAµ)
−

∂L

∂Aµ
= 0.

It is convenient to rescale Aµ and jµ such that the unit of electric charge is 1 instead

of the charge e of an electron. Also, I will use g instead of e. Doing so, g only appears in

the kinetic terms for the gauge fields: L = − 1
4g2FµνF

µν . This applies in any D, and in any

D, the mass dimensions are [Fµν ] = 2 and [L] = D, so [g−2] = D − 4. The force between

two point charges separated by distance r is ∼ g2r1−d and [F ] = [ma] = 2 = 4−D+ d− 1

checks.

If we dimensionally reduce, then g−2
reduced = g−2

originalV .
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