
4/19/18 Lecture outline

⋆ Reading: Zwiebach chapters 3,4,5.

• Last time: what about gravity in other D? In 4d, we have gravitational potential

given by Φ
(4)
g = −GM/r, which solves ∇2Φ

(D)
g = 4πG(D)ρm.

In any spacetime dimension, take Fg = −m∇Φg, and ∇2Φ
(D)
g = 4πG(D)ρm. So in

h̄ = c = 1 units, get [F ] = 2, [Φ] = 0, [ρ] = D, so [G] = 2 − D. Take G = ℓD−2
P in D

spacetime dimensions.

Get GD = GVC , where VC is the compactification volume. Example: consider a

string of tension T that is wrapped on a circle in a 5th dimension, of radius ℓC . So

ρ5d = Tδ(x1)δ(x2)δ(x3) and ρ4d = ℓρ5d, i.e. the 4d mass is M = Tℓc, and the potential is

Φ = −G4M/r = −G4TℓC/r. Fits with G5 = G4ℓC .

More generally, if we dimensionally reduce, then G−1
reduced = G−1

originalVC .

• Gravity is described, according to Einstein, by taking ds2 = gµνdx
µdxµ, with gµν

dynamical and analogous to Aµ. The analog of L = −1
4FµνF

µν is the Einstein Hilbert

action, S ⊃
∫

dDx
√

|g| 1
16πG

R, where R is called the Ricci scalar curvature. We will

not discuss it in detail, and the only point that I’d like to make for the moment is that

it is convenient to take mass dimensions such that [x] = −1 and [gµν ] = 0 and then,

since R is built from second derivatives of gµν , it has [R] = 2, so [G−1] = D − 2, i.e.

G ∼ ℓD−2
P ∼ M2−D

P . This fits with the force between two masses being F ∼ Gm1m2/r
D−2.

If we dimensionally reduce, get G−1
reduced = G−1

originalV , as above.

• Return to the Lagrangian of electromagnetism

S =

∫

dDxL, L = −
1

4
FµνF

µν +
1

c
Aµj

µ.

The two Maxwell’s equations expressing absence of magnetic monopoles are, again, solved

by setting Fµν = ∂[µAν]. The other two Maxwell’s equations then come from the Euler

-Lagrange equations of the above action upon varying Aµ → Aµ + δAµ: the action is

stationary when

∂ν
∂L

∂(∂νAµ)
−

∂L

∂Aµ

= 0 → ∂νF
µν =

1

c
jµ

• Nonrelativistic strings. [T0] = [F ] = [E]/L = [µ0][v
2]. Indeed, considering F = ma

for an element dx of the string yields the string wave equation ∂2y
∂x2 − 1

v2

0

∂2y
∂t2

= 0, with

v0 =
√

T0/µ0. Endpoints at x = 0 and x = a. Can choose Dirichlet or Neumann BCs at

these points. With Dirichlet at each end, yn(x) = An sin(nπx/a) and the general solution
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is y(x, t) =
∑

n yn(x) cosωnt, where ωn = v0nπ/a (and the An are determined from the

initial conditions, by Fourier transform).

ended here

The nonrelativistic string action is S =
∫

dtL where L is the kinetic energy minus

potential energy, which gives

S =

∫

dt

∫

dx

(

1
2µ0(

∂y

∂t
)2 − 1

2T0(
∂y

∂x
)2
)

,

which is a particular case of the more general action S =
∫

dtdxL(∂y
∂t
, ∂y
∂x

). We can then

define the momentum density and corresponding spatial quantity

Pt =
∂L

∂ẏ
, Px =

∂L

∂y′
.

The variation of the action is

δS =

∫

dtdx[Ptδẏ + Pxδy′] = −

∫

dtdx[
∂Pt

∂t
+

∂Px

∂x
]δy + bndy terms

and the action is made stationary, δS = 0, if the boundary terms vanish and if

∂Pt

∂t
+

∂Px

∂x
= 0,

which when applied to the above particular choice of action gives the usual wave equation.

The boundary terms must also be set to zero, and they involve Ptδy at the time endpoints

and Pxδy at the space endpoints. Neumann BCs is to set Px = 0 at the spatial endpoints

(for all t), and Dirichlet BCs is to set δy = 0 (and thus Pt = 0) at the spatial endpoints.

• The action for a relativistic point particle of mass m is S = −mc
∫

ds =

−mc2
∫

dt
√

1− v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2, both of

which are constants of the motion (thanks to the time and spatial translation invariance).

• Reparametrization invariance: write xµ(τ), and can change worldline parameter τ

to an arbitrary new parameterization τ ′(τ), and the action is invariant. To see this use

S = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ
and change dxµ

dτ
= dxµ

dτ ′

dτ ′

dτ
and note that S → S. The Euler

Lagrange equations of motion are
dpµ

dτ
= 0.
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