
4/24/18 Lecture outline

⋆ Reading: Zwiebach chapters 4,5,6.

• Continue from last time: mass m is S = −mc
∫

ds = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ
, propor-

tional to the worldline length and reparameterization invariant under τ → τ ′(τ). Likewise,

for a string world-sheet, we need two parameters, ξa, a = 1, 2. The string trajectory is

x : Σ → M , where Σ is the 2d world-sheet, with local coordinates ξa, and M is the target

space, with local coordinates xµ. The worldsheet area element is A =
∫

d2ξ
√

|h|, where
hab is the worldsheet metric, and |h| is its determinant. Suppose that the target space has

metric gµν , with space-time length e.g. ds2 = gµνdx
µdxν . By writing dxµ = ∂ax

µdξa, we

get

ds2 = gµν
dxµ

dξa
dxν

dξb
dξadξb, so hab = gµν

dxµ

dξa
dxν

dξb
,

where this hab is called the induced metric. So the worldsheet area functional is

A =

∫

d2ξ

√

det
ab

(gµν
dxµ

dξa
dxν

dξb
).

For strings in Minkowski spacetime, we write it instead as Xµ(τ, σ). There is also a

needed minus sign, as the area element is
√

|g|, actually involves the absolute value of the

determinant, and the determinant is negative (just like det η = −1). So

A =

∫

dτdσ

√

(
∂X

∂τ
· ∂X
∂σ

)2 − (
∂X

∂τ
)2(

∂X

∂σ
)2,

where the spacetime indices are contracted with the metric gµν . To get an action with

[S] = ML2/T , we have

SNambu−Goto = −T0

c

∫ τf

τi

dτ

∫

dσ

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

where we define Ẋµ ≡ dxµ

dτ
and Xµ′ ≡ ∂Xµ

∂σ
annd T0 is the string tension, with [T0] =

[F ] = [ML/T 2].

The action is reparameterization invariant: can take (τ, σ) → (τ ′(τ, σ), σ′(τ, σ)) and

get S → S. Enormous symmetry/redundancy in choice of (τ, σ); can “fix the gauge” to

some convenient choice, and the physics is completely independent of the choice. This is

crucial, since the worldsheet coordinates have no physical significance.

• We can write SNG =
∫

d2ξLNG with Lagrangian density

LNG = −T0

c

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,
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and we have

Pτ
µ =

∂L
∂Ẋµ

= −T0

c

(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′

= −T0

c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′

µ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.

The condition δS = 0 gives the Euler-Lagrange equations

∂Pτ
µ

∂τ
+

∂Pσ
µ

∂σ
= 0.

For the open string, δS = 0 also requires
∫

dτ [δXµP σ
µ ]

σ0

0
= 0, which requires for each µ

index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
∂Xµ

∂τ
(τ, σ∗) = 0 → δXµ(τ, σ∗) = 0,

Neumann Pσ
µ (τ, σ∗) = 0.

• Exploit (τ, σ) → (τ ′, σ′) reparameterization invariance to pick useful “gauges”, to

simplify the above equations. We will discuss choices such that we can impose constraints

Ẋ ·X ′ = 0 Ẋ2 +X ′2 = 0. (1)

In this case, we have

Pτµ =
1

2πα′
Ẋµ Pσµ = − 1

2πα′
Xµ′

, (2)

and then the EOM is simply a wave equation:

(∂2

τ − ∂2

σ)X
µ = 0. (3)

Now let’s explain these things in more detail.

• Static gauge: pick τ = t. Verify sign inside
√· in this case: Xµ′

= (0, ~X ′), Ẋµ =

(c, ~̇X), take e.g. ~̇X = 0 to get
√· = c| ~X ′|.

• In static gauge, there is no KE, so L = −V , and verify that string stretched length

a, e.g. X1 = f(σ), has V = T0a: Ẋ
2 → −c2, (X ′)2 = (f ′)2, Ẋ ·X ′ = 0, gives V = T0a. So

µ0 = T0/c
2.

• In static gauge, express S in terms of ~v⊥ = ∂t ~X − (∂t ~X · ∂s ~X)∂s ~X (with

ds ≡ |d ~X|t=const = |∂σ ~X||dσ|), show (Ẋ · X ′)2 − Ẋ2(X ′)2 = ( ds
dσ

)2(c2 − v2
⊥
), to get

L = −T0

∫

ds
√

1− v2
⊥
/c2. Also get

Pσµ = −T0

c2
(∂s ~X · ∂t ~X)Ẋµ + (c2 − (∂t ~X)2)∂sX

µ

√

1− v2
⊥
/c2

,

Pτµ =
T0

c2
ds

dσ

Ẋµ − (∂s ~X · ∂t ~X)∂sX
µ

√

1− v2
⊥
/c2

.
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