\star All numbered exercises are from Zwiebach

1. 2.3. In lecture, we discussed the Lorentz transformation Λ of a four vector a^{μ} under boosts with velocity v along the x-axis.
(a) Verify that a_{μ} transforms by the inverse Λ^{-1}, which is related to Λ by $v \rightarrow-v$.
(b) Using the chain rule, show that $\frac{\partial}{\partial x^{\mu}}$ transforms the same way as a_{μ}, with a lower index. So $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$.
(c) Show that in quantum mechanics the expressions for the energy and momentum in terms of derivatives can be written as $p_{\mu}=\frac{\hbar}{i} \partial_{\mu}$.
(d) QC 2.2: Let a^{μ} and b^{μ} be any 4 -vectors. Transform a^{μ} and b^{μ} by a boost along the x-axis and verify that that $a^{\mu} b_{\mu}$ is invariant (this is similar to part (a)).
2. 2.4 .
(0) Verify that the Lorentz boost along the x-axis satisfies $\Lambda^{T} \eta \Lambda=\eta$, where η is the flat metric of spacetime. This is a general identity for Lorentz transformations: a transformation $a^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} a^{\nu}$ is a Lorentz transformation if and only if the matrix $\Lambda_{\nu}^{\mu^{\prime}}$ satisfies this identity.
(a) Show that if Λ_{1} and Λ_{2} satisfy this identity, so does $\Lambda_{1} \Lambda_{2}$.
(b) Show that if Λ satisfies this identity, so does Λ^{-1}.
(c) Show that if Λ satisfies this identity, so does Λ^{T}.
3. Consider the spacetime path $x=x_{0}(\cosh \lambda-1), c t=x_{0} \sinh \lambda$, where λ is a coordinate along the spacetime worldline of the object.
(a) Compute the proper time $d \tau=c^{-1} \sqrt{-d x_{\mu} d x^{\mu}}$ for this path, and show that it is proportional to $d \lambda$, therefore λ is proportional to τ. Find the proportionality constant.
(b) Compute $u^{0} \equiv \frac{d(c t)}{d \tau}$ and $u^{1} \equiv \frac{d x}{d \tau}$ and $v \equiv \frac{d x}{d t}$ for this path.
