137 HW 1 Due 4/9/19

 \star All numbered exercises are from Zwiebach

- 1. 2.3. In lecture, we discussed the Lorentz transformation Λ of a four vector a^{μ} under boosts with velocity v along the x-axis.
 - (a) Verify that a_{μ} transforms by the inverse Λ^{-1} , which is related to Λ by $v \to -v$.

(b) Using the chain rule, show that $\frac{\partial}{\partial x^{\mu}}$ transforms the same way as a_{μ} , with a lower index. So $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$.

(c) Show that in quantum mechanics the expressions for the energy and momentum in terms of derivatives can be written as $p_{\mu} = \frac{\hbar}{i} \partial_{\mu}$.

(d) QC 2.2: Let a^{μ} and b^{μ} be any 4-vectors. Transform a^{μ} and b^{μ} by a boost along the *x*-axis and verify that that $a^{\mu}b_{\mu}$ is invariant (this is similar to part (a)).

 $2.\ 2.4.$

(0) Verify that the Lorentz boost along the x-axis satisfies $\Lambda^T \eta \Lambda = \eta$, where η is the flat metric of spacetime. This is a general identity for Lorentz transformations: a transformation $a^{\mu'} = \Lambda^{\mu'}_{\nu} a^{\nu}$ is a Lorentz transformation if and only if the matrix $\Lambda^{\mu'}_{\nu}$ satisfies this identity.

- (a) Show that if Λ_1 and Λ_2 satisfy this identity, so does $\Lambda_1 \Lambda_2$.
- (b) Show that if Λ satisfies this identity, so does Λ^{-1} .
- (c) Show that if Λ satisfies this identity, so does Λ^T .
- 3. Consider the spacetime path $x = x_0(\cosh \lambda 1)$, $ct = x_0 \sinh \lambda$, where λ is a coordinate along the spacetime worldline of the object.

(a) Compute the proper time $d\tau = c^{-1}\sqrt{-dx_{\mu}dx^{\mu}}$ for this path, and show that it is proportional to $d\lambda$, therefore λ is proportional to τ . Find the proportionality constant.

(b) Compute $u^0 \equiv \frac{d(ct)}{d\tau}$ and $u^1 \equiv \frac{dx}{d\tau}$ and $v \equiv \frac{dx}{dt}$ for this path.