
5/2/19 Lecture outline

⋆ Reading: Zwiebach chapters 7, 8.

• Continue where we left off. We chose a gauge such that the NG string EOM simplifies

(Ẋ ±X ′)2 = 0 → (∂2
τ − c2∂2

σ)X
µ = 0 (1)

with dσ = ds√
1−v2

⊥
/c2

= dE
T0

.

We were studying the solution of the EOM for open string with free (N) BCs at

each end. Write the solution of the EOM as ~X(t, σ) = 1
2
( ~F (ct + σ) + G(ct − σ)). The

BC at σ = 0 gives F ′(ct) = G′(ct), which implies G = F + const, and the constant can

be absorbed into F so ~X(t, σ) = 1
2(

~F (ct + σ) + ~F (ct − σ)) where the open string has

σ ∈ [0, σ1] and the constraints in (1) imply that |d~F (u)
du |2 = 1, and ~X ′|ends = 0 implies

~F (u + 2σ1) = ~F (u) + 2σ1~v0/c. Note ~F (u) is the position of the σ = 0 end at time

u/c. Then show that ~v0 is the average velocity of any point σ on the string over time

interval 2σ1/c. Observing motion of σ = 0 end over that ∆t, together with E, gives

motion of string for all t. Example from book: ~X(t, σ = 0) = ℓ
2(cosωt, sinωt). Find

~F (u) = σ1

π (cosπu/σ1, sinπu/σ1), with ~v0 = 0. |d~Fdu |2 = 1 gives ℓ = 2c/ω = 2E/πT0.

Finally, ~X(t, σ) = σ1

π cos(πσ/σ1)(cos(πct/σ1), sin(πct/σ1)). Note that the ends indeed

move at the speed of light.

• Closed string motion: again, solve the string worldsheet wave equation by ~X =
1
2
( ~F (u) + ~G(v)) where u = ct + σ and v = ct − σ. The parameterization constraints give

| ~F ′(u)|2 = | ~G′(v)|2 = 1 and σ ∼ σ + σ1 periodicity, with σ1 = E/T0.

• Next topic: symmetries and conservation laws, on the string worldsheet and in

spacetime. Recall charge conservation ∂µj
µ = 0, which is required by gauge invariance of

L ⊃ Aµj
µ, i.e. δL = 0 under δAµ = ∂µf . Show that it implies conservation ofQ =

∫

d3xj0.

• Recall Noether’s theorem for L(q, q̇): continuous symmetry δqi implies that piδqi is

conserved.

Likewise, for S =
∫

dξ0 . . . dξkL(φa, ∂αφ
a), a symmetry δφa implies a conserved cur-

rent jα = ∂L
∂(∂αφa)

δφa: show it satisfies ∂αj
α = 0, so Q =

∫

dξ1 . . . dξk has d
dξ0

Q = 0.

For a string S =
∫

dξ0dξ1L(∂αXµ) (has translation invariance, δXµ = ǫµ so there is

a conserved current ǫµjαµ = ∂L
∂(∂αXµ)

δXµ. So get conservation of jaµ = Pa
µ (where a = σ, τ)

is the conserved Noether current for spacetime translation invariance, δXµ = ǫµ. The

string equations of motion are equivalent to the worldsheet conservation of this current:

∂aj
a
µ = 0. The spacetime momentum of the string is the corresponding conserved charge:
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pµ =
∫

dσPτ
µ . So

dpµ

dτ = −
∫ σ1

0
∂σPσ

µ = −Pσ
µ |σ

1

0 . It is conserved for the closed string,

or open Neumann BCs. Not conserved for Dirichlet BCs. The Dirichlet case means that

the string ends on a D-brane, and momentum can go through the string into the D-brane

(their total momentum is conserved). Same for wave on a string with the ends tied down,

e.g. a traveling wave is reflected, which flips p → −p, but the difference in momentum is

transferred to the post at the end and total momentum of the system is conserved.

• Note that pµ is a conserved worldsheet charge. It becomes a conserved spacetime

charge in static gauge, τ = t. We can write more generally the conserved flux of worldsheet

current as (Pτ
µ ,Pσ

µ ) · (dσ,−dτ), where (dτ, dσ) is the tangent to the curve Γ that we’re

integrating over and (dσ,−dτ) gives the outward normal. So pµ(Γ) =
∫

Γ
(Pτ

µdσ − Pσ
µdτ).

The difference between some Γ and Γ′ with the same endpoints (i.e. ∂(Γ − Γ′) = 0) is
∮

Γ−Γ′=∂R
(Pτ

µdσ −Pσ
µdτ) =

∫

R
dτdσ(∂τPτ

µ + ∂σPσ
µ ) = 0.

• Using Pαµ in static gauge, we get for the conserved charges

p0 =
E

c
=

∫

T0ds
√

1− v2
⊥
/c2

, ~p =

∫

T0ds

c2
v⊥

√

1− v2
⊥
/c2

.

• Lorentz symmetry comes from the worldsheet symmetry δXµ = ǫµνXν , which is

a symmetry if ǫµν = ǫ[µν], e.g. δ(ηµνX
µXν) = 0. The terms in the string Lagrangian

LNG = −T0

c

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 involve ηµν∂αX
µ∂βX

ν , which again is invariant un-

der δXµ = ǫµνXν .

The associated conserved currents are Mα
µν = XµPα

ν − (µ ↔ ν). The corresponding

charges Mµν =
∫

(Mτ
µνdσ −Mσ

µνdτ) are the angular momenta. Note that M0i = ctpi −
∫

dσX iPτ0, which can be interpreted as X i
cm(t) = −cM0i

E + t c
2pi

E .

• Recall J = h̄α′E2, with [α′] = −2, which is the Regge trajectory obser-

vation of the early ’70s.. Consider now a string rotating in 12 plane, with the

EOM solved by ~X = σ1

π cos(πσ/σ1)(cos(πct/σ1), sin(πct/σ1)). So ~Pτ = T0

c2
~̇X =

T0

c
cos(πσ/σ1)(− sin(πct/σ1), cos(πct/σ1)). Find that the rotational angular momentum

has M12 =
∫ σ1

0
dσ(X1Pτ

2 −X2Pτ
1 ), which using above ~X(t, σ) and ~Pτ = T0

c2 ∂t
~X, leads to

M12 = σ2
1T0/2πc, which is a constant as expected. Since σ1 = E/T0 and M12 = J , this

gives J = α′h̄E2 ℓs = h̄c
√
α′, with T0 ≡ 1/2πα′h̄c.

• Aside, for later: the string worldsheet analog of Sparticle ⊃
∫

qAµdx
µ is Sstring ⊃

−
∫

Σ
Bµν∂τX

µ∂σX
νdσdτ .
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