\star Reading: Zwiebach chapters 7, 8 .

- Continue where we left off. We chose a gauge such that the NG string EOM simplifies

$$
\begin{equation*}
\left(\dot{X} \pm X^{\prime}\right)^{2}=0 \quad \rightarrow \quad\left(\partial_{\tau}^{2}-c^{2} \partial_{\sigma}^{2}\right) X^{\mu}=0 \tag{1}
\end{equation*}
$$

with $d \sigma=\frac{d s}{\sqrt{1-v_{\perp}^{2} / c^{2}}}=\frac{d E}{T_{0}}$.
We were studying the solution of the EOM for open string with free (N) BCs at each end. Write the solution of the EOM as $\vec{X}(t, \sigma)=\frac{1}{2}(\vec{F}(c t+\sigma)+G(c t-\sigma))$. The BC at $\sigma=0$ gives $F^{\prime}(c t)=G^{\prime}(c t)$, which implies $G=F+$ const, and the constant can be absorbed into F so $\vec{X}(t, \sigma)=\frac{1}{2}(\vec{F}(c t+\sigma)+\vec{F}(c t-\sigma))$ where the open string has $\sigma \in\left[0, \sigma_{1}\right]$ and the constraints in (1) imply that $\left|\frac{d \vec{F}(u)}{d u}\right|^{2}=1$, and $\left.\vec{X}^{\prime}\right|_{\text {ends }}=0$ implies $\vec{F}\left(u+2 \sigma_{1}\right)=\vec{F}(u)+2 \sigma_{1} \vec{v}_{0} / c$. Note $\vec{F}(u)$ is the position of the $\sigma=0$ end at time u / c. Then show that \vec{v}_{0} is the average velocity of any point σ on the string over time interval $2 \sigma_{1} / c$. Observing motion of $\sigma=0$ end over that Δt, together with E, gives motion of string for all t. Example from book: $\vec{X}(t, \sigma=0)=\frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u)=\frac{\sigma_{1}}{\pi}\left(\cos \pi u / \sigma_{1}, \sin \pi u / \sigma_{1}\right)$, with $\vec{v}_{0}=0 .\left|\frac{d \vec{F}}{d u}\right|^{2}=1$ gives $\ell=2 c / \omega=2 E / \pi T_{0}$. Finally, $\vec{X}(t, \sigma)=\frac{\sigma_{1}}{\pi} \cos \left(\pi \sigma / \sigma_{1}\right)\left(\cos \left(\pi c t / \sigma_{1}\right), \sin \left(\pi c t / \sigma_{1}\right)\right)$. Note that the ends indeed move at the speed of light.

- Closed string motion: again, solve the string worldsheet wave equation by $\vec{X}=$ $\frac{1}{2}(\vec{F}(u)+\vec{G}(v))$ where $u=c t+\sigma$ and $v=c t-\sigma$. The parameterization constraints give $\left|\vec{F}^{\prime}(u)\right|^{2}=\left|\vec{G}^{\prime}(v)\right|^{2}=1$ and $\sigma \sim \sigma+\sigma_{1}$ periodicity, with $\sigma_{1}=E / T_{0}$.
- Next topic: symmetries and conservation laws, on the string worldsheet and in spacetime. Recall charge conservation $\partial_{\mu} j^{\mu}=0$, which is required by gauge invariance of $\mathcal{L} \supset A_{\mu} j^{\mu}$, i.e. $\delta \mathcal{L}=0$ under $\delta A_{\mu}=\partial_{\mu} f$. Show that it implies conservation of $Q=\int d^{3} x j^{0}$.
- Recall Noether's theorem for $L(q, \dot{q})$: continuous symmetry δq_{i} implies that $p_{i} \delta q_{i}$ is conserved.

Likewise, for $S=\int d \xi^{0} \ldots d \xi^{k} \mathcal{L}\left(\phi^{a}, \partial_{\alpha} \phi^{a}\right)$, a symmetry $\delta \phi^{a}$ implies a conserved current $j^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} \phi^{a}\right)} \delta \phi^{a}$: show it satisfies $\partial_{\alpha} j^{\alpha}=0$, so $Q=\int d \xi^{1} \ldots d \xi^{k}$ has $\frac{d}{d \xi^{0}} Q=0$.

For a string $S=\int d \xi^{0} d \xi^{1} \mathcal{L}\left(\partial_{\alpha} X^{\mu}\right)$ (has translation invariance, $\delta X^{\mu}=\epsilon^{\mu}$ so there is a conserved current $\epsilon^{\mu} j_{\mu}^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} X^{\mu}\right)} \delta X^{\mu}$. So get conservation of $j_{\mu}^{a}=\mathcal{P}_{\mu}^{a}$ (where $a=\sigma, \tau$) is the conserved Noether current for spacetime translation invariance, $\delta X^{\mu}=\epsilon^{\mu}$. The string equations of motion are equivalent to the worldsheet conservation of this current: $\partial_{a} j_{\mu}^{a}=0$. The spacetime momentum of the string is the corresponding conserved charge:
$p_{\mu}=\int d \sigma \mathcal{P}_{\mu}^{\tau}$. So $\frac{d p_{\mu}}{d \tau}=-\int_{0}^{\sigma_{1}} \partial_{\sigma} \mathcal{P}_{\mu}^{\sigma}=-\mathcal{P}_{\mu}^{\sigma}| |_{0}^{\sigma^{1}}$. It is conserved for the closed string, or open Neumann BCs. Not conserved for Dirichlet BCs. The Dirichlet case means that the string ends on a D-brane, and momentum can go through the string into the D-brane (their total momentum is conserved). Same for wave on a string with the ends tied down, e.g. a traveling wave is reflected, which flips $p \rightarrow-p$, but the difference in momentum is transferred to the post at the end and total momentum of the system is conserved.

- Note that p_{μ} is a conserved worldsheet charge. It becomes a conserved spacetime charge in static gauge, $\tau=t$. We can write more generally the conserved flux of worldsheet current as $\left(\mathcal{P}_{\mu}^{\tau}, \mathcal{P}_{\mu}^{\sigma}\right) \cdot(d \sigma,-d \tau)$, where $(d \tau, d \sigma)$ is the tangent to the curve Γ that we're integrating over and $(d \sigma,-d \tau)$ gives the outward normal. So $p_{\mu}(\Gamma)=\int_{\Gamma}\left(\mathcal{P}_{\mu}^{\tau} d \sigma-\mathcal{P}_{\mu}^{\sigma} d \tau\right)$. The difference between some Γ and Γ^{\prime} with the same endpoints (i.e. $\partial\left(\Gamma-\Gamma^{\prime}\right)=0$) is $\oint_{\Gamma-\Gamma^{\prime}=\partial R}\left(\mathcal{P}_{\mu}^{\tau} d \sigma-\mathcal{P}_{\mu}^{\sigma} d \tau\right)=\int_{R} d \tau d \sigma\left(\partial_{\tau} \mathcal{P}_{\mu}^{\tau}+\partial_{\sigma} \mathcal{P}_{\mu}^{\sigma}\right)=0$.
- Using $\mathcal{P}^{\alpha \mu}$ in static gauge, we get for the conserved charges

$$
p^{0}=\frac{E}{c}=\int \frac{T_{0} d s}{\sqrt{1-v_{\perp}^{2} / c^{2}}}, \quad \vec{p}=\int \frac{T_{0} d s}{c^{2}} \frac{v_{\perp}}{\sqrt{1-v_{\perp}^{2} / c^{2}}} .
$$

- Lorentz symmetry comes from the worldsheet symmetry $\delta X^{\mu}=\epsilon^{\mu \nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu \nu}=\epsilon^{[\mu \nu]}$, e.g. $\delta\left(\eta_{\mu \nu} X^{\mu} X^{\nu}\right)=0$. The terms in the string Lagrangian $\mathcal{L}_{N G}=-\frac{T_{0}}{c} \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}$ involve $\eta_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}$, which again is invariant un$\operatorname{der} \delta X^{\mu}=\epsilon^{\mu \nu} X_{\nu}$.

The associated conserved currents are $\mathcal{M}_{\mu \nu}^{\alpha}=X_{\mu} \mathcal{P}_{\nu}^{\alpha}-(\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu \nu}=\int\left(\mathcal{M}_{\mu \nu}^{\tau} d \sigma-\mathcal{M}_{\mu \nu}^{\sigma} d \tau\right)$ are the angular momenta. Note that $M^{0 i}=c t p^{i}-$ $\int d \sigma X^{i} \mathcal{P}^{\tau 0}$, which can be interpreted as $X_{c m}^{i}(t)=\frac{-c M^{0 i}}{E}+t \frac{c^{2} p^{i}}{E}$.

- Recall $J=\hbar \alpha^{\prime} E^{2}$, with $\left[\alpha^{\prime}\right]=-2$, which is the Regge trajectory observation of the early ' 70 s.. Consider now a string rotating in 12 plane, with the EOM solved by $\vec{X}=\frac{\sigma_{1}}{\pi} \cos \left(\pi \sigma / \sigma_{1}\right)\left(\cos \left(\pi c t / \sigma_{1}\right), \sin \left(\pi c t / \sigma_{1}\right)\right)$. So $\overrightarrow{\mathcal{P}}^{\tau}=\frac{T_{0}}{c^{2}} \vec{X}=$ $\frac{T_{0}}{c} \cos \left(\pi \sigma / \sigma_{1}\right)\left(-\sin \left(\pi c t / \sigma_{1}\right), \cos \left(\pi c t / \sigma_{1}\right)\right)$. Find that the rotational angular momentum has $M_{12}=\int_{0}^{\sigma_{1}} d \sigma\left(X_{1} \mathcal{P}_{2}^{\tau}-X_{2} \mathcal{P}_{1}^{\tau}\right)$, which using above $\vec{X}(t, \sigma)$ and $\overrightarrow{\mathcal{P}}^{\tau}=\frac{T_{0}}{c^{2}} \partial_{t} \vec{X}$, leads to $M_{12}=\sigma_{1}^{2} T_{0} / 2 \pi c$, which is a constant as expected. Since $\sigma_{1}=E / T_{0}$ and $M_{12}=J$, this gives $J=\alpha^{\prime} \hbar E^{2} \ell_{s}=\hbar c \sqrt{\alpha^{\prime}}$, with $T_{0} \equiv 1 / 2 \pi \alpha^{\prime} \hbar c$.
- Aside, for later: the string worldsheet analog of $S_{\text {particle }} \supset \int q A_{\mu} d x^{\mu}$ is $S_{\text {string }} \supset$ $-\int_{\Sigma} B_{\mu \nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d \sigma d \tau$.

