5/2/19 Lecture outline

- \star Reading: Zwiebach chapters 7, 8.
- Continue where we left off. We chose a gauge such that the NG string EOM simplifies

$$(\dot{X} \pm X')^2 = 0 \qquad \rightarrow \qquad (\partial_\tau^2 - c^2 \partial_\sigma^2) X^\mu = 0 \tag{1}$$

with $d\sigma = \frac{ds}{\sqrt{1 - v_{\perp}^2/c^2}} = \frac{dE}{T_0}$.

We were studying the solution of the EOM for open string with free (N) BCs at each end. Write the solution of the EOM as $\vec{X}(t,\sigma) = \frac{1}{2}(\vec{F}(ct+\sigma) + G(ct-\sigma))$. The BC at $\sigma = 0$ gives F'(ct) = G'(ct), which implies G = F + const, and the constant can be absorbed into F so $\vec{X}(t,\sigma) = \frac{1}{2}(\vec{F}(ct+\sigma) + \vec{F}(ct-\sigma))$ where the open string has $\sigma \in [0,\sigma_1]$ and the constraints in (1) imply that $|\frac{d\vec{F}(u)}{du}|^2 = 1$, and $\vec{X}'|_{ends} = 0$ implies $\vec{F}(u+2\sigma_1) = \vec{F}(u) + 2\sigma_1 \vec{v}_0/c$. Note $\vec{F}(u)$ is the position of the $\sigma = 0$ end at time u/c. Then show that \vec{v}_0 is the average velocity of any point σ on the string over time interval $2\sigma_1/c$. Observing motion of $\sigma = 0$ end over that Δt , together with E, gives motion of string for all t. Example from book: $\vec{X}(t,\sigma=0) = \frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u) = \frac{\sigma_1}{\pi}(\cos \pi u/\sigma_1, \sin \pi u/\sigma_1)$, with $\vec{v}_0 = 0$. $|\frac{d\vec{F}}{du}|^2 = 1$ gives $\ell = 2c/\omega = 2E/\pi T_0$. Finally, $\vec{X}(t,\sigma) = \frac{\sigma_1}{\pi} \cos(\pi \sigma/\sigma_1)(\cos(\pi ct/\sigma_1), \sin(\pi ct/\sigma_1))$. Note that the ends indeed move at the speed of light.

• Closed string motion: again, solve the string worldsheet wave equation by $\vec{X} = \frac{1}{2}(\vec{F}(u) + \vec{G}(v))$ where $u = ct + \sigma$ and $v = ct - \sigma$. The parameterization constraints give $|\vec{F}'(u)|^2 = |\vec{G}'(v)|^2 = 1$ and $\sigma \sim \sigma + \sigma_1$ periodicity, with $\sigma_1 = E/T_0$.

• Next topic: symmetries and conservation laws, on the string worldsheet and in spacetime. Recall charge conservation $\partial_{\mu}j^{\mu} = 0$, which is required by gauge invariance of $\mathcal{L} \supset A_{\mu}j^{\mu}$, i.e. $\delta \mathcal{L} = 0$ under $\delta A_{\mu} = \partial_{\mu}f$. Show that it implies conservation of $Q = \int d^3x j^0$.

• Recall Noether's theorem for $L(q, \dot{q})$: continuous symmetry δq_i implies that $p_i \delta q_i$ is conserved.

Likewise, for $S = \int d\xi^0 \dots d\xi^k \mathcal{L}(\phi^a, \partial_\alpha \phi^a)$, a symmetry $\delta \phi^a$ implies a conserved current $j^\alpha = \frac{\partial \mathcal{L}}{\partial (\partial_\alpha \phi^a)} \delta \phi^a$: show it satisfies $\partial_\alpha j^\alpha = 0$, so $Q = \int d\xi^1 \dots d\xi^k$ has $\frac{d}{d\xi^0} Q = 0$.

For a string $S = \int d\xi^0 d\xi^1 \mathcal{L}(\partial_\alpha X^\mu)$ (has translation invariance, $\delta X^\mu = \epsilon^\mu$ so there is a conserved current $\epsilon^\mu j^\alpha_\mu = \frac{\partial \mathcal{L}}{\partial(\partial_\alpha X^\mu)} \delta X^\mu$. So get conservation of $j^a_\mu = \mathcal{P}^a_\mu$ (where $a = \sigma, \tau$) is the conserved Noether current for spacetime translation invariance, $\delta X^\mu = \epsilon^\mu$. The string equations of motion are equivalent to the worldsheet conservation of this current: $\partial_a j^a_\mu = 0$. The spacetime momentum of the string is the corresponding conserved charge: $p_{\mu} = \int d\sigma \mathcal{P}_{\mu}^{\tau}$. So $\frac{dp_{\mu}}{d\tau} = -\int_{0}^{\sigma_{1}} \partial_{\sigma} \mathcal{P}_{\mu}^{\sigma} = -\mathcal{P}_{\mu}^{\sigma} |_{0}^{\sigma^{1}}$. It is conserved for the closed string, or open Neumann BCs. Not conserved for Dirichlet BCs. The Dirichlet case means that the string ends on a D-brane, and momentum can go through the string into the D-brane (their total momentum is conserved). Same for wave on a string with the ends tied down, e.g. a traveling wave is reflected, which flips $p \to -p$, but the difference in momentum is transferred to the post at the end and total momentum of the system is conserved.

• Note that p_{μ} is a conserved *worldsheet* charge. It becomes a conserved spacetime charge in static gauge, $\tau = t$. We can write more generally the conserved flux of worldsheet current as $(\mathcal{P}^{\tau}_{\mu}, \mathcal{P}^{\sigma}_{\mu}) \cdot (d\sigma, -d\tau)$, where $(d\tau, d\sigma)$ is the tangent to the curve Γ that we're integrating over and $(d\sigma, -d\tau)$ gives the outward normal. So $p_{\mu}(\Gamma) = \int_{\Gamma} (\mathcal{P}^{\tau}_{\mu} d\sigma - \mathcal{P}^{\sigma}_{\mu} d\tau)$. The difference between some Γ and Γ' with the same endpoints (i.e. $\partial(\Gamma - \Gamma') = 0$) is $\oint_{\Gamma - \Gamma' = \partial R} (\mathcal{P}^{\tau}_{\mu} d\sigma - \mathcal{P}^{\sigma}_{\mu} d\tau) = \int_{R} d\tau d\sigma (\partial_{\tau} \mathcal{P}^{\tau}_{\mu} + \partial_{\sigma} \mathcal{P}^{\sigma}_{\mu}) = 0.$

• Using $\mathcal{P}^{\alpha\mu}$ in static gauge, we get for the conserved charges

$$p^{0} = \frac{E}{c} = \int \frac{T_{0}ds}{\sqrt{1 - v_{\perp}^{2}/c^{2}}}, \qquad \vec{p} = \int \frac{T_{0}ds}{c^{2}} \frac{v_{\perp}}{\sqrt{1 - v_{\perp}^{2}/c^{2}}}.$$

• Lorentz symmetry comes from the worldsheet symmetry $\delta X^{\mu} = \epsilon^{\mu\nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu\nu} = \epsilon^{[\mu\nu]}$, e.g. $\delta(\eta_{\mu\nu}X^{\mu}X^{\nu}) = 0$. The terms in the string Lagrangian $\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}$ involve $\eta_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}$, which again is invariant under $\delta X^{\mu} = \epsilon^{\mu\nu} X_{\nu}$.

The associated conserved currents are $\mathcal{M}^{\alpha}_{\mu\nu} = X_{\mu}\mathcal{P}^{\alpha}_{\nu} - (\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu\nu} = \int (\mathcal{M}^{\tau}_{\mu\nu} d\sigma - \mathcal{M}^{\sigma}_{\mu\nu} d\tau)$ are the angular momenta. Note that $M^{0i} = ctp^i - \int d\sigma X^i \mathcal{P}^{\tau 0}$, which can be interpreted as $X^i_{cm}(t) = \frac{-cM^{0i}}{E} + t\frac{c^2p^i}{E}$.

• Recall $J = \hbar \alpha' E^2$, with $[\alpha'] = -2$, which is the Regge trajectory observation of the early '70s.. Consider now a string rotating in 12 plane, with the EOM solved by $\vec{X} = \frac{\sigma_1}{\pi} \cos(\pi \sigma / \sigma_1)(\cos(\pi ct / \sigma_1), \sin(\pi ct / \sigma_1))$. So $\vec{\mathcal{P}}^{\tau} = \frac{T_0}{c^2} \dot{\vec{X}} = \frac{T_0}{c} \cos(\pi \sigma / \sigma_1)(-\sin(\pi ct / \sigma_1)), \cos(\pi ct / \sigma_1))$. Find that the rotational angular momentum has $M_{12} = \int_0^{\sigma_1} d\sigma (X_1 \mathcal{P}_2^{\tau} - X_2 \mathcal{P}_1^{\tau})$, which using above $\vec{X}(t, \sigma)$ and $\vec{\mathcal{P}}^{\tau} = \frac{T_0}{c^2} \partial_t \vec{X}$, leads to $M_{12} = \sigma_1^2 T_0 / 2\pi c$, which is a constant as expected. Since $\sigma_1 = E/T_0$ and $M_{12} = J$, this gives $J = \alpha' \hbar E^2 \ell_s = \hbar c \sqrt{\alpha'}$, with $T_0 \equiv 1/2\pi \alpha' \hbar c$.

• Aside, for later: the string worldsheet analog of $S_{particle} \supset \int q A_{\mu} dx^{\mu}$ is $S_{string} \supset -\int_{\Sigma} B_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d\sigma d\tau$.