5/9/19 Lecture outline

 \star Reading: Zwiebach chapters 8, 9.

• Continue where we left off last time: symmetry and conservation laws for the case of Lorentz transformations. As we discussed, continuous symmetries $\delta\phi^a$ of a field theory with $S = \int d\xi^0 \dots d\xi^{p-1} \mathcal{L}(\phi^a, \partial_\alpha \phi^a)$ leads to conserved currents $j^\alpha = \frac{\partial \mathcal{L}}{\partial(\partial_\alpha \phi^a)} \delta\phi^a$, satisfying $\partial_\alpha j^\alpha = 0$. We apply this to the case of the worldsheet, where symmetries are δX^μ and $\alpha = 0, 1 \to \tau, \sigma$. The corresponding worldsheet conserved charge is $\int d\sigma j^\tau$. More generally, we have conserved charge $\int_{\Gamma} (j^\tau d\sigma - j^\sigma d\tau)$, where $(d\sigma, -d\tau)$ is the outward normal to a curve with tangent $(d\tau, d\sigma)$. If the curve is closed, we can use Stokes theorem to get $\oint_{\Gamma} (j^\tau d\sigma - j^\sigma d\tau) = \int_R (\partial_\tau j^\tau + \partial_\sigma j^\sigma) d\tau d\sigma = 0$ by current conservation, showing again that the charge is conserved and independent of deformations of the curve Γ .

For $\delta X^{\mu} = \epsilon^{\mu}$ translations, the charge is $p_{\mu} = \int d\sigma \mathcal{P}_{\mu}^{\tau}$. Now continue with Lorentz symmetry, which comes from the worldsheet symmetry $\delta X^{\mu} = \epsilon^{\mu\nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu\nu} = \epsilon^{[\mu\nu]}$, e.g. $\delta(\eta_{\mu\nu}X^{\mu}X^{\nu}) = 0$. Discuss cases of spatial rotations and boosts, explain why both indeed involve antisymmetric $\epsilon^{\mu\nu}$. Lorentz symmetry is of course a symmetry of the string Lagrangian $\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}$ involve $\eta_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$, since all Lorentz vector indices are contracted via Lorentz scalar dot products.

The associated conserved currents are $\mathcal{M}^{\alpha}_{\mu\nu} = X_{\mu}\mathcal{P}^{\alpha}_{\nu} - (\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu\nu} = \int (\mathcal{M}^{\tau}_{\mu\nu} d\sigma \text{ are the angular momentum. We can also consider more generally$ $conserved charges <math>M_{\mu\nu}[\Gamma] = \int_{\Gamma} (\mathcal{M}^{\tau}_{\mu\nu} d\sigma - \mathcal{M}^{\sigma}_{\mu\nu} d\tau)$. Note that the charges associated with boosts are $M^{0i} = ctp^i - \int d\sigma X^i \mathcal{P}^{\tau 0}$, which can be interpreted as $X^i_{cm}(t) = \frac{-cM^{0i}}{E} + t\frac{c^2p^i}{E}$.

• Recall $J = \hbar \alpha' E^2$, with $[\alpha'] = -2$, which is the Regge trajectory observation of the early '70s.. Consider now a string rotating in 12 plane, with the EOM solved by (as discussed last week): $\vec{X} = \frac{\sigma_1}{\pi} \cos(\pi \sigma / \sigma_1) (\cos(\pi ct / \sigma_1), \sin(\pi ct / \sigma_1))$. So $\vec{\mathcal{P}}^{\tau} = \frac{T_0}{c^2} \dot{\vec{X}} = \frac{T_0}{c} \cos(\pi \sigma / \sigma_1) (-\sin(\pi ct / \sigma_1), \cos(\pi ct / \sigma_1))$. Find that the rotational angular momentum has $M_{12} = \int_0^{\sigma_1} d\sigma (X_1 \mathcal{P}_2^{\tau} - X_2 \mathcal{P}_1^{\tau})$, which using above $\vec{X}(t, \sigma)$ and $\vec{\mathcal{P}}^{\tau} = \frac{T_0}{c^2} \partial_t \vec{X}$, leads to $M_{12} = \sigma_1^2 T_0 / 2\pi c$, which is a constant as expected. Since $\sigma_1 = E/T_0$ and $M_{12} = J$, this gives $J = \alpha' \hbar E^2$, with $T_0 \equiv 1/2\pi \alpha' \hbar c$. The string length is $\ell_s = \hbar c \sqrt{\alpha'}$.

• Aside, for later: the string worldsheet analog of $S_{particle} \supset \int q A_{\mu} dx^{\mu}$ is $S_{string} \supset -\int_{\Sigma} B_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d\sigma d\tau$.

• Outline of plan, to quantize the relativistic string. Description of challenge of quantizing \mathcal{L}_{NG} because of the square-root. Recall how the trying to quantize with the squareroot in $E = \sqrt{(cp)^2 + (mc^2)^2}$ led Dirac to the Dirac equation. Summarize two approaches: the Polyakov description or using light-cone gauge quantization. This class will follow the latter approach, as in the textbook.