\star Reading: Zwiebach chapters 8, 9 .

- Continue where we left off last time: symmetry and conservation laws for the case of Lorentz transformations. As we discussed, continuous symmetries $\delta \phi^{a}$ of a field theory with $S=\int d \xi^{0} \ldots d \xi^{p-1} \mathcal{L}\left(\phi^{a}, \partial_{\alpha} \phi^{a}\right)$ leads to conserved currents $j^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} \phi^{a}\right)} \delta \phi^{a}$, satisfying $\partial_{\alpha} j^{\alpha}=0$. We apply this to the case of the worldsheet, where symmetries are δX^{μ} and $\alpha=0,1 \rightarrow \tau, \sigma$. The corresponding worldsheet conserved charge is $\int d \sigma j^{\tau}$. More generally, we have conserved charge $\int_{\Gamma}\left(j^{\tau} d \sigma-j^{\sigma} d \tau\right)$, where $(d \sigma,-d \tau)$ is the outward normal to a curve with tangent $(d \tau, d \sigma)$. If the curve is closed, we can use Stokes theorem to get $\oint_{\Gamma}\left(j^{\tau} d \sigma-j^{\sigma} d \tau\right)=\int_{R}\left(\partial_{\tau} j^{\tau}+\partial_{\sigma} j^{\sigma}\right) d \tau d \sigma=0$ by current conservation, showing again that the charge is conserved and independent of deformations of the curve Γ.

For $\delta X^{\mu}=\epsilon^{\mu}$ translations, the charge is $p_{\mu}=\int d \sigma \mathcal{P}_{\mu}^{\tau}$. Now continue with Lorentz symmetry, which comes from the worldsheet symmetry $\delta X^{\mu}=\epsilon^{\mu \nu} X_{\nu}$, which is a symmetry if $\epsilon^{\mu \nu}=\epsilon^{[\mu \nu]}$, e.g. $\delta\left(\eta_{\mu \nu} X^{\mu} X^{\nu}\right)=0$. Discuss cases of spatial rotations and boosts, explain why both indeed involve antisymmetric $\epsilon^{\mu \nu}$. Lorentz symmetry is of course a symmetry of the string Lagrangian $\mathcal{L}_{N G}=-\frac{T_{0}}{c} \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}$ involve $\eta_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}$, since all Lorentz vector indices are contracted via Lorentz scalar dot products.

The associated conserved currents are $\mathcal{M}_{\mu \nu}^{\alpha}=X_{\mu} \mathcal{P}_{\nu}^{\alpha}-(\mu \leftrightarrow \nu)$. The corresponding charges $M_{\mu \nu}=\int\left(\mathcal{M}_{\mu \nu}^{\tau} d \sigma\right.$ are the angular momentum. We can also consider more generally conserved charges $M_{\mu \nu}[\Gamma]=\int_{\Gamma}\left(\mathcal{M}_{\mu \nu}^{\tau} d \sigma-\mathcal{M}_{\mu \nu}^{\sigma} d \tau\right)$. Note that the charges associated with boosts are $M^{0 i}=c t p^{i}-\int d \sigma X^{i} \mathcal{P}^{\tau 0}$, which can be interpreted as $X_{c m}^{i}(t)=\frac{-c M^{0 i}}{E}+t \frac{c^{2} p^{i}}{E}$.

- Recall $J=\hbar \alpha^{\prime} E^{2}$, with $\left[\alpha^{\prime}\right]=-2$, which is the Regge trajectory observation of the early '70s.. Consider now a string rotating in 12 plane, with the EOM solved by (as discussed last week): $\vec{X}=\frac{\sigma_{1}}{\pi} \cos \left(\pi \sigma / \sigma_{1}\right)\left(\cos \left(\pi c t / \sigma_{1}\right), \sin \left(\pi c t / \sigma_{1}\right)\right)$. So $\overrightarrow{\mathcal{P}}^{\tau}=\frac{T_{0}}{c^{2}} \dot{\vec{X}}=$ $\frac{T_{0}}{c} \cos \left(\pi \sigma / \sigma_{1}\right)\left(-\sin \left(\pi c t / \sigma_{1}\right), \cos \left(\pi c t / \sigma_{1}\right)\right)$. Find that the rotational angular momentum has $M_{12}=\int_{0}^{\sigma_{1}} d \sigma\left(X_{1} \mathcal{P}_{2}^{\tau}-X_{2} \mathcal{P}_{1}^{\tau}\right)$, which using above $\vec{X}(t, \sigma)$ and $\overrightarrow{\mathcal{P}}^{\tau}=\frac{T_{0}}{c^{2}} \partial_{t} \vec{X}$, leads to $M_{12}=\sigma_{1}^{2} T_{0} / 2 \pi c$, which is a constant as expected. Since $\sigma_{1}=E / T_{0}$ and $M_{12}=J$, this gives $J=\alpha^{\prime} \hbar E^{2}$, with $T_{0} \equiv 1 / 2 \pi \alpha^{\prime} \hbar c$. The string length is $\ell_{s}=\hbar c \sqrt{\alpha^{\prime}}$.
- Aside, for later: the string worldsheet analog of $S_{\text {particle }} \supset \int q A_{\mu} d x^{\mu}$ is $S_{\text {string }} \supset$ $-\int_{\Sigma} B_{\mu \nu} \partial_{\tau} X^{\mu} \partial_{\sigma} X^{\nu} d \sigma d \tau$.
- Outline of plan, to quantize the relativistic string. Description of challenge of quantizing $\mathcal{L}_{N G}$ because of the square-root. Recall how the trying to quantize with the squareroot in $E=\sqrt{(c p)^{2}+\left(m c^{2}\right)^{2}}$ led Dirac to the Dirac equation. Summarize two approaches: the Polyakov description or using light-cone gauge quantization. This class will follow the latter approach, as in the textbook.

