
5/14/19 Lecture outline

⋆ Reading: Zwiebach chapter 9.

• As some review for the next topic, recall the light cone coordinates: a± = (a0 ±
a1)/

√
2, so a ·b = −a−a+−a+a−+

∑

I a
IbI , where I = 2, . . . runs over the transverse space

directions. Ugly, but can help quantize. Recall the light cone metric gives a± = −a∓. Now

recall a plane wave solution of QM ψ = eipµx
µ/h̄, which has E → ih̄∂t and ~p→ −ih̄∇. In

light cone coordinates, we write it as ψ = exp(i(−p−x+ − p+x− +
∑

I pIx
I)/h̄). We think

of x+ as time and then see that p− is the energy.

In non-relativisitic QM, get Schrodinger equation by writing H = ~p2/2m+ V (x) and

replacing H → ih̄ ∂
∂t

and ~p → −ih̄∇. In relativistic case, considering free particle for

simplicity, have H =
√

(c~p)2 + (mc2)2 and ~p → −ih̄∇ would require understanding how

to take the square-root of an operator. This is what led Dirac to the Dirac equation for

relativistic electrons, and the start of quantum field theory. Very interesting, but not the

topic of this class. We will avoid going there by the trick of the light cone.

Write −p · p = m2 (setting c = 1) as 2p+p− =
∑

I p
IpI +m2. In the light cone, we

think of x+ as time. Then p− = Hlc = (
∑

I p
IpI + m2)/2p+. No need for square-root.

Looks similar to non-relativistic case.

• Use h̄ = c = 1 units. Recall [α′] = 1/[T0] = L2. Write

LNG = − 1

2πα′

√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2,

and we have

Pτ
µ =

∂L
∂Ẋµ

= − 1

2πα′
(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
,

and

Pσ
µ =

∂L
∂Xµ′ = − 1

2πα′
(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′

µ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
.

which we simplified by picking static gauge.

• Generalize static gauge (to eventually get to light cone gauge). Consider e.g. gauge

nµX
µ = λτ for time-like nµ, so our previous static gauge is nµ = (1, 0, . . . , 0). Light cone

static gauge takes instead nµ = 1√
2
(1, 1, 0 . . .). Vary, nµdX

µ = λdτ , so nµ is orthogonal to

the string tangent at constant τ . We want dXµ along the string to be spacelike (or null

at isolated points, e.g. the Neumann open string endpoints).
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Before, we took (τ, σ) to have units of time and length. Now it is more convenient to

take them to be dimensionless, and use λ to account for the units. As we will see, for open

strings it is natural to take σ ∈ [0, π] and λ = 2α′(n · p). Note that the units work, and

that the upshot is invariant under rescaling nµ and that n · p is a constant of the motion.

We will see that for closed strings it is nicer to instead take σ ∈ [0, 2π] and λ = α′(n · p).
We’re free to choose these normalizations conveniently because we can rescale τ to make

it work, and that is a subgroup of the full reparameterization symmetry.

Before, we chose our σ parameterization such that nµPτµ is a constant. We will

likewise, for general nµ, choose σ such that n · Pτ is a constant of the motion of the string

worldsheet. This is not a reprarameterization invariant statement - that is the point: we

are using it to fix a gauge. Using the EOM, this implies that n · Pσ is independent of σ

and then can argue that n · Pσ = 0.

More generally, it is convenient to write the gauge fixing conditions as

n · Pσ = 0, n ·X = βα′(n · p)τ, n · p = 2π

β
n · Pτ ,

where β = 2 for open strings and β = 1 for closed strings. These lead to

Ẋ ·X ′ = 0 Ẋ2 + c2X ′2 = 0. (1)

Pτµ =
1

2πα′ Ẋ
µ Pσµ = − c2

2πα′X
µ′

, (2)

(∂2τ − c2∂2σ)X
µ = 0. (3)

• We will later focus on light cone gauge: nµ = (1/
√
2, 1/

√
2, 0, . . .). Introducing nµ

obscures the relativistic invariance in spacetime. Why would we want to do that? Well we

wouldn’t, except that it happens to have some other benefits once we quantize the theory.

It gives a way to determine the spectrum without having to introduce unphysical states.

There is a covariant approach, but it requires introducing unphysical states (“ghosts”) and

then ensuring that they are projected out of the physical spectrum – doing this requires

sophisticated theory which is only taught at the advanced graduate student level, so we’ll

stick with the simpler (and in the end physically equivalent) light-cone gauge description.

• The general solution of the linear equations (3) is a superposition of Fourier modes

Xµ(τ, σ) = xµ0 + 2α′pµτ + i
√
2α′

∞
∑

n6=0

1

n
αµ
ne

−inτ cosnσ,

2



where αµ
−n ≡ αµ∗

n (to make Xµ real) and it’s also convenient to define αµ
0 ≡

√
2α′pµ. Then

Ẋµ ±Xµ′

=
√
2α′

∞
∑

n=−∞
αµ
ne

−in(τ±σ).

• In light cone gauge take nµ = (1/
√
2, 1/

√
2, 0, . . .). Then n ·X = X+ and n ·p = p+,

so our constraint gives X+ = βα′p+τ and p+ = 2πPτ+/β (again, β = 2 for open strings

and β = 1 for closed strings. Also note, X ′+ = 0 and Ẋ+ = βα′p+); of course, p+ is

a constant of the motion. Since the constraints give (Ẋ ±X ′)2 = −2(Ẋ+ ±X ′+)(Ẋ− ±
X ′−)+ (ẊI ±X ′I)2 = 0, we can write this as ∂τX

−±∂σX− = 1
βα′

1
2p+ (Ẋ

I ±XI′

)2, where

I are the transverse directions. This leads to

√
2α′α−

n ≡ 1

p+
L⊥
n , L⊥

n = 1
2

∞
∑

m=−∞
αI
n−mα

I
m.

Note that the worldsheet coordinates dropped out. This means that there is no dynamics

in X−, other than the zero mode.
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