## 5/16/19 Lecture outline

* Reading: Zwiebach chapters 9, 10.

Recall from last time: generalize static gauge to go to light cone gauge $n_{\text {static }}^{\mu}=$ $(1,0,0, \ldots) \rightarrow n_{\text {lightcone }}^{\mu}=(1 / \sqrt{2}, 1 / \sqrt{2}, 0, \ldots)$

$$
n \cdot \mathcal{P}^{\sigma}=0, \quad n \cdot X=\beta \alpha^{\prime}(n \cdot p) \tau, \quad n \cdot p=\frac{2 \pi}{\beta} n \cdot \mathcal{P}^{\tau}
$$

where $\beta=2$ for open strings and $\beta=1$ for closed strings. These lead to

$$
\begin{gather*}
\dot{X} \cdot X^{\prime}=0 \quad \dot{X}^{2}+c^{2} X^{\prime 2}=0  \tag{1}\\
\mathcal{P}^{\tau \mu}=\frac{1}{2 \pi \alpha^{\prime}} \dot{X}^{\mu} \quad \mathcal{P}^{\sigma \mu}=-\frac{c^{2}}{2 \pi \alpha^{\prime}} X^{\mu^{\prime}}  \tag{2}\\
\left(\partial_{\tau}^{2}-c^{2} \partial_{\sigma}^{2}\right) X^{\mu}=0 \tag{3}
\end{gather*}
$$

The general solution of the linear equations (3) is a superposition of Fourier modes

$$
X^{\mu}(\tau, \sigma)=x_{0}^{\mu}+2 \alpha^{\prime} p^{\mu} \tau+i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0}^{\infty} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \tau} \cos n \sigma
$$

where $\alpha_{-n}^{\mu} \equiv \alpha_{n}^{\mu *}\left(\right.$ to make $X^{\mu}$ real) and it's also convenient to define $\alpha_{0}^{\mu} \equiv \sqrt{2 \alpha^{\prime}} p^{\mu}$. Then

$$
\dot{X}^{\mu} \pm X^{\mu^{\prime}}=\sqrt{2 \alpha^{\prime}} \sum_{n=-\infty}^{\infty} \alpha_{n}^{\mu} e^{-i n(\tau \pm \sigma)}
$$

In light cone gauge, $n \cdot X=X^{+}$and $n \cdot p=p^{+}$, so our constraint gives $X^{+}=\beta \alpha^{\prime} p^{+} \tau$ and $p^{+}=2 \pi \mathcal{P}^{\tau+} / \beta$ (again, $\beta=2$ for open strings and $\beta=1$ for closed strings. Also note, $X^{\prime+}=0$ and $\dot{X}^{+}=\beta \alpha^{\prime} p^{+}$); of course, $p^{+}$is a constant of the motion. Since the constraints give $\left(\dot{X} \pm X^{\prime}\right)^{2}=-2\left(\dot{X}^{+} \pm X^{\prime+}\right)\left(\dot{X}^{-} \pm X^{\prime-}\right)+\left(\dot{X}^{I} \pm X^{\prime I}\right)^{2}=0$, we can write this as $\partial_{\tau} X^{-} \pm \partial_{\sigma} X^{-}=\frac{1}{\beta \alpha^{\prime}} \frac{1}{2 p^{+}}\left(\dot{X}^{I} \pm X^{I^{\prime}}\right)^{2}$, where $I$ are the transverse directions.

- The independent quantities are thus $X^{I}(\tau, \sigma), p^{+}, x_{0}^{-}$. The other $X^{-}$modes:

$$
\sqrt{2 \alpha^{\prime}} \alpha_{n}^{-} \equiv \frac{1}{p^{+}} L_{n}^{\perp}, \quad L_{n}^{\perp}=\frac{1}{2} \sum_{m=-\infty}^{\infty} \alpha_{n-m}^{I} \alpha_{m}^{I}
$$

Note that the worldsheet coordinates dropped out. This means that there is no dynamics in $X^{-}$, other than the zero mode.

For $n=0$, using $\alpha_{0}^{-}=\sqrt{2 \alpha^{\prime}} p^{-}$get $2 \alpha^{\prime} p^{+} p^{-}=L_{0}^{\perp}$. Light cone gauge allows us to make $\dot{X}^{+}$a constant, and to solve for the derivatives of $X^{-}$(without having to take a square root). Finally, note that the string has

$$
M^{2}=-p^{2}=2 p^{+} p^{-}-p^{I} p^{I}=\frac{1}{\alpha^{\prime}} \sum_{n=1}^{\infty} \alpha_{n}^{I *} \alpha_{n}^{I} .
$$

See that all classical states have $M^{2} \geq 0$. Note that this is a continuous $M \geq 0$ classically, and only one state with $M=0$; neither would be good for using strings as elementary particles. As we will soon discuss, quantum effects cures both of these problems: the values of $M$ will be quantized, and the states with $M=0$ will give the expected polarizations for a massless gauge field in the open string case, and for a gravity (plus extra stuff) in the closed string case.

- We will consider quantization of fields and then strings. As a warmup, consider classical scalar field theory, with $S=\int d^{D} x\left(-\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}\right)$. The EOM is the Klein-Gordon equation

$$
\left(\partial^{2}-m^{2}\right) \phi=0, \quad \partial^{2} \equiv-\frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}
$$

The Hamiltonian is $H=\int d^{D-1} x\left(\frac{1}{2} \Pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}\right)$, where $\Pi=\partial \mathcal{L} / \partial\left(\partial_{0} \phi\right)=\partial_{0} \phi$. Take e.g. $D=1$ and get SHO with $q \rightarrow \phi$ and $m \rightarrow 1$ and $\omega \rightarrow m$.

Classical plane wave solutions: $\phi(t, \vec{x})=a e^{-i E t+i \vec{p} \cdot \vec{x}}+$ c.c., where $E=E_{p}=$ $\sqrt{\vec{p}^{2}+m^{2}}$, and the $+c . c$. is to make $\phi$ real. Letting $\phi(x)=\int \frac{d^{D} p}{(2 \pi)^{D}} e^{i p \cdot x} \phi(p)$, the reality condition is $\phi(p)^{*}=\phi(-p)$ and the EOM is $\left(p^{2}+m^{2}\right) \phi(p)=0$.

