5/21/19 Lecture outline

 \star Reading: Zwiebach chapter 10.

Recall from last time: consider quantization of fields and then strings. As a warmup, consider classical scalar field theory, with $S = \int d^D x \left(-\frac{1}{2}\eta^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m^2\phi^2\right)$. The EOM is the Klein-Gordon equation

$$(\partial^2 - m^2)\phi = 0, \qquad \partial^2 \equiv -\frac{\partial^2}{\partial t^2} + \nabla^2$$

The Hamiltonian is $H = \int d^{D-1}x(\frac{1}{2}\Pi^2 + \frac{1}{2}(\nabla\phi)^2 + \frac{1}{2}m^2\phi^2)$, where $\Pi = \partial \mathcal{L}/\partial(\partial_0\phi) = \partial_0\phi$. Take e.g. D = 1 and get SHO with $q \to \phi$ and $m \to 1$ and $\omega \to m$.

Classical plane wave solutions: $\phi(t, \vec{x}) = ae^{-iEt+i\vec{p}\cdot\vec{x}} + c.c.$, where $E = E_p = \sqrt{\vec{p}^2 + m^2}$, and the +c.c. is to make ϕ real. Letting $\phi(x) = \int \frac{d^D p}{(2\pi)^D} e^{ip\cdot x} \phi(p)$, the reality condition is $\phi(p)^* = \phi(-p)$ and the EOM is $(p^2 + m^2)\phi(p) = 0$.

• Now consider light cone gauge coordinates. Replace $\partial^2 \to -2\partial_+\partial_- + \partial_I\partial_I$ and Fourier transform

$$\phi(x^+, x^-, \vec{x}_T) = \int \frac{dp^+}{2\pi} \int \frac{d^{D-2}\vec{p}_T}{(2\pi)^{D-2}} e^{-ix^-p^+ + i\vec{x}_T \cdot \vec{p}_T} \phi(x^+, p^+, \vec{p}_T).$$

Then the EOM becomes

$$(i\frac{\partial}{\partial x^{+}} - \frac{1}{2p^{+}}(p^{I}p^{I} + m^{2}))\phi(x^{+}, p^{+}, \vec{p}_{T}) = 0.$$

Looks like the non-relativistic Schrodinger equation, with x_+ playing the role of time and p^+ playing the role of mass, even though it is secretly relativistic.

• Let's quantize! Replace ϕ with an operator. Consider

$$\phi(t, \vec{x}) = \frac{1}{\sqrt{V}} \sum_{\vec{p}} \frac{1}{\sqrt{2E_p}} (a_{\vec{p}}(t)e^{i\vec{p}\cdot\vec{x}} + a_{\vec{p}}^{\dagger}(t)e^{-ip\cdot x}).$$

If we're in a spatial box, then $p_i L_i = 2\pi n_i$. Compute the energy to find

$$H = \sum_{\vec{p} > 0} \left(\frac{1}{2E_p} \dot{a}_p^{\dagger} \dot{a}_p(t) + \frac{1}{2} E_p a_p^{\dagger} a_p \right) = \sum_{\vec{p}} E_p a_{\vec{p}}^{\dagger} a_{\vec{p}}.$$

where the EOM were used in the last step: $a_{\vec{p}}(t) = a_{\vec{p}}e^{-iE_pt} + a^{\dagger}_{-\vec{p}}e^{iE_pt}$. Also,

$$\vec{P} = \sum_{\vec{p}} \vec{p} a_{\vec{p}}^{\dagger} a_{\vec{p}}.$$

As expected, H and \vec{P} are independent of t. We quantize this as a (complex) SHO for each value of \vec{p} :

$$[a_p, a_k^{\dagger}] = \delta_{p,k}, \qquad [a_p, a_k] = [a_p^{\dagger}, a_k^{\dagger}] = 0.$$

and interpret the above H and \vec{P} has saying that $a_{\pm\vec{p}}^{\dagger}$ is a creation operator, creating a state with energy $E_p = \sqrt{\vec{p}^2 + m^2}$ and spatial momentum \vec{p} from the vacuum $|\Omega\rangle$. Note that we dropped the $2 \cdot \frac{1}{2}E_p$ groundstate energy contribution, for no good reason. This is a contribution to the vacuum energy of empty space, and it is divergent upon summing over all p. This zero point energy is important (only) for gravity, and a contribution to the cosmological constant. Since this is an unresolved problem, we won't discuss it further.

• Now consider the Maxwell field A^{μ} and quantize \rightarrow photons. In the vacuum, setting $j^{\mu} = 0$, we have $\partial_{\mu}F^{\nu\mu} = 0$, which implies $\partial^{2}A^{\mu} - \partial^{\mu}(\partial \cdot A) = 0$. Massless. Fourier transform to $A^{\mu}(p)$, with $A^{\mu}(-p) = A^{\mu}(p)^{*}$, and get $(p^{2}\eta^{\mu\nu} - p^{\mu}p^{\nu})A_{\nu}(p) = 0$. Gauge invariance: $\delta A_{\mu}(p) = ip_{\mu}\epsilon(p)$. In light cone gauge, since $p^{+} \neq 0$, can use gauge invariance to choose ϵ such that $A^{+}(p) = 0$. Then taking $\mu = +$ in the EOM, and $p^{+} \neq 0$, get $\partial \cdot A = 0$ which gives $A^{-} = (p^{I}A^{I})/p^{+}$, i.e. A^{-} is not an independent d.o.f., but rather constrained, and the Maxewell EOM gives $p^{2}A^{\mu}(p) = 0$. For $p^{2} \neq 0$, require $A^{\mu}(p) = 0$, and for $p^{2} = 0$ get that there are D - 2 physical transverse d.o.f., the $A^{I}(p)$. The one-photon states are

$$\sum_{I=2}^{D-1} \xi_I a_{p^+,p_T}^{I\dagger} |\omega\rangle.$$