
5/23/19 Lecture outline

⋆ Reading: Zwiebach chapters 10, 11

• Recall from last time: Maxwell field Aµ and quantize → photons. In the vacuum,

setting jµ = 0, we have ∂µF
νµ = 0, which implies ∂2Aµ−∂µ(∂ ·A) = 0. Massless. Fourier

transform to Aµ(p), with Aµ(−p) = Aµ(p)∗, and get (p2ηµν − pµpν)Aν(p) = 0. Gauge

invariance: δAµ(p) = ipµǫ(p). In light cone gauge, since p+ 6= 0, can use gauge invariance

to choose ǫ such that A+(p) = 0. Then taking µ = + in the EOM, and p+ 6= 0, get ∂ ·A = 0

which gives A− = (pIAI)/p+, i.e. A− is not an independent d.o.f., but rather constrained,

and the Maxewell EOM gives p2Aµ(p) = 0. For p2 6= 0, require Aµ(p) = 0, and for p2 = 0

get that there are D − 2 physical transverse d.o.f., the AI(p). The one-photon states are

D−1∑

I=2

ξIa
I†

p+,pT

|ω〉.

• Likewise, in GR in the weak field expansion gµν = ηµν + hµν , where hµν is treated

as a small perturbation, Einstein’s equations of GR in a linearized expansion shows that

hµν has wave solutions propagating at v = c. The linearized EOM in terms of the Fourier

transform hµν(p) is p2hµν − pα(p
µhνα + pνhµα) + pµpνh = 0. The gauge transformation

(general coordinate invariance) is δhµν = ipµǫν(p) + (µ ↔ ν). The EOM are indeed

invariant under that. In light cone coordinates, δh++ = 2ip+ǫ+, δh+I = ip+ǫ− + ip−ǫ+,

and δh+I = ip+ǫ
I + ipIǫ+. So can chose ǫ± and ǫI to impose the gravitational light cone

gauge conditions: h++ = h+− = h+I = 0. The h−µ Other components are constrained.

The equations of motion, with p+ 6= 0, imply that hIJδIJ = 0. So physical d.o.f. are

specified by a traceless symmetric matrix hIJ in the D− 2 transverse directions. So there

are 1

2
D(D − 3) d.o.f., e.g. in 4d gravity waves have two independent polarizations (they

are sometimes called + and x polarizations, or linear combinations are called L and R

circular).

• Recall the relativistic point particle, with S =
∫
Ldτ and L = −m

√
−ẋ2, where ≡̇ d

dτ
.

(τ is taken to be dimensionless.) The momentum is pµ = ∂L/∂ẋµ = mẋµ/
√
−ẋ2 and the

EOM is ṗµ = 0. In light cone gauge we take x+ = p+τ/m2. Then p+ = mẋ+/
√
−ẋ2 and

the light cone gauge condition implies ẋ2 = −1/m2, so pµ = m2ẋµ. Also, p2+m2 = 0 yields

p− = (pIpI +m2)/2p+, which is solved for p− and then ẋ− = p−/m2 is integrated to x− =

p−τ/m2 + x−0 . Also, xI = xI0 + pIτ/m2. The independent variables are (xI , x−0 , p
I , p+).
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• Heisenberg picture: put time dependence in the operators rather than the states,

with [q(t), p(t)] = i and

i
d

dt
O(t) = i

∂O
∂t

+ [O, H].

For time independent Hamiltonian, we have |ψ(t)〉S = e−iHt|ψ〉H and OH = eiHtOSe
−iHt.

• Quantize the point particle in light cone gauge by taking the independent operators

(xI , x−0 , p
I , p+), with [xI , pJ ] = iηIJ and [x−0 , p

+] = iη−+ = −i. These commutators

are for either S or H picture, with the operators being functions of τ in the H picture.

The remaining variables are defined by x+(τ) = p+τ/m2, x−(τ) = x−0 + p−τ/m2, p− =

(pIpI +m2)/2p+ (the first two are explicitly τ dependent even in the S picture).

The Hamiltonian is ∼ p−, which generates ∂
∂x+ translations. Since ∂

∂τ
= p+

m2

∂
∂x+ ↔

p+

m2 p
− the Hamiltonian is

H =
p+p−

m2
=

1

2m2
(pIpI +m2).

Verify e.g.

i
d

dτ
pµ = [pµ, H] = 0, i

dxI

dτ
= [xI , H] = i

pI

m2
,

reproducing the correct EOM. Likewise, verify ẋ−0 = 0 and ẋ+ = ∂τx
+ = p+/m2.

The momentum eigenstates are labeled by |p+, pI〉 and these are also energy eigenstates,

H|p+, pI〉 = 1

2m2 (p
IpI +m2)|p+, pI〉.

• Connect the quantized point particle with the excitations of scalar field theory via

|p+, pI〉 ↔ a†
p+,pI |Ω〉.

The S.E. of the quantum point particle wavefunction maps to the classical scalar field

equations, e.g. in light cone gauge:

(i∂τ − 1

2m2
(pIpI +m2))φ(τ, p+, pI) = 0

is either the quantum S.E. of the point particle or the classical field equations of a scalar

field.

(Aside: the light cone is here used as a trick to get to “second quantization.” “First

quantization” is what you learn the first time you study (non-relativisitic) QM: replace

coordinates and momenta with operators, and Poisson brackets with commutators. Second

quantization is for field theory, replacing the fields and their conjugate momenta with

operators, and their PBs with commutators, leading to multi-particle states. Here light-

cone first quantization of the point particle leads to a Schrodinger equation that agrees

with the classical EOM of a light-cone field theory, which we then need to quantize again

to get second quantization.
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