\star Reading: Zwiebach chapters 2 and 3 .

- Extra (spacelike) dimensions, e.g. 2 extra dimensions: $-d s^{2}=-c^{2} d t^{2}+\sum_{i=1}^{5}\left(d x^{i}\right)^{2}$. Consider one extra space dimension, taken to be a circle, $x \sim x+2 \pi R$. Now consider $(x, y) \sim(x+2 \pi R, y) \sim(x, y+2 \pi R)$; gives a torus. Orbifold, e.g. $z \sim e^{i \pi i / N} z$, gives a cone (singular at fixed point).
- Recall QM: $\left[x^{i}, p_{j}\right]=i \hbar \delta_{j}^{i}$. Particle in square well box of size $a: E=(n \pi / a)^{2} / 2 m$. Now particle in periodic box, $x_{4} \sim x_{4}+2 \pi R$. The other directions, x^{μ}, are given by some standard Hamiltonian, e.g. the hydrogen atom, which we'll call $H_{4 d}$. So $H_{5 d}=$ $H_{4 d}+\widehat{p}_{4}^{2} / 2 m$, with $\widehat{p}_{4}=-i \hbar \partial_{x_{4}}$ in position space. The 4 d energy eigenstates are then given by separation of variables to be $\psi_{E_{5 d}}\left(\vec{x}, x_{4}\right)=\psi_{E_{4 d}}(\vec{x}) \frac{1}{\sqrt{2 \pi R}} e^{i \ell x_{4} / R}$, with ℓ an integer, and $\psi_{E_{4 d}}$ is an energy eigenstate of the 4 d problem. So $E_{5 d}=E_{4 d}+\ell^{2} / 2 m R^{2}$. For R small, the low energy states are simply those with $\ell=0$, and the extra dimension is unseen.
- Use units where Maxwell's equations are $\nabla \times \vec{E}=-\frac{1}{c} \partial_{t} \vec{B}, \nabla \cdot \vec{B}=0, \nabla \cdot \vec{E}=\rho$, $\nabla \times \vec{B}=\frac{1}{c} \vec{j}+\frac{1}{c} \partial_{t} \vec{E}$. The first two equations can be solved by introducing the scalar and vector potential: $\vec{B}=\nabla \times \vec{A}, \vec{E}=-\frac{1}{c} \partial_{t} \vec{A}-\nabla \phi$. Gauge invariance: all physics (including \vec{E} and \vec{B}) invariant under

$$
\begin{equation*}
\phi \rightarrow \phi-\frac{1}{c} \frac{\partial f}{\partial t}, \quad \vec{A} \rightarrow \vec{A}+\nabla f \tag{1}
\end{equation*}
$$

for an arbitrary function $f(t, \vec{x})$. This initially dull sounding invariance takes a fundamental role in modern high energy physics: such local (because f can vary locally over space-time) gauge symmetries are in direct correspondence with forces!

- Maxwell's equations in relativistic form. Like last time, $x^{\mu}=(c t, \vec{x})$ and also use $\partial_{\mu}=\left(c \partial_{t}, \nabla\right)$ (and thus $\left.\partial^{\mu}=\left(-c \partial_{t}, \nabla\right)\right) . \vec{E}$ and \vec{B} combine into an antisymmetric, 2-index, 4-tensor $F_{\mu \nu}=-F_{\nu \mu}$, via $F_{0 i}=-E_{i}$ and $F_{i j}=\epsilon_{i j k} B^{k}$, i.e.

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

As usual, we can raise and lower indices with $\eta_{\mu \nu}$, e.g. $F^{\mu \nu}=\eta^{\mu \lambda} \eta^{\nu \sigma} F_{\lambda \sigma}$ and with the book's sign convention this gives a minus sign each time a time component is raised or lowered. So $F^{0 i}=-F_{0 i}$ and $F^{i j}=F_{i j}$, where i and j refer to the spatial components, i.e. the matrix $F^{\mu \nu}$ is similar to that above, but with $\vec{E} \rightarrow-\vec{E}$.

Under Lorentz transformations, $x^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{\nu} x^{\nu}$, the electric and magnetic fields transform as $F^{\mu^{\prime} \nu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{\sigma} \Lambda^{\nu^{\prime}}{ }_{\rho} F^{\sigma \rho}$. Sources combine into a 4 -vector as $j^{\mu}=(c \rho, \vec{j})$, and charge conservation is the Lorentz-invariant equation $\partial_{\mu} j^{\mu}=0$.

The Lorentz force law is $f_{E \& M}^{\mu}=\frac{q}{c} F^{\mu \nu} u_{\nu}$ (go through the exercise of checking the sign on the board). Maxwell's equations in relativistic form are $\partial_{[\mu} F_{\rho \sigma]}=0$, and $\partial_{\lambda} F^{\mu \lambda}=$ $\frac{1}{c} j^{\mu}$ (this convention, with indices not next to each other contracted, is peculiar to the $(-+++)$ choice of $\left.\eta_{\mu \nu}\right)$, which exhibits that they transform covariantly under Lorentz transformations.

The scalar and vector potential combine to the 4 -vector $A^{\mu}=(\phi, \vec{A})$ and the first two Maxwell equations are solved via $F^{\mu \nu}=\partial^{[\mu} A^{\nu]}$. The gauge invariance is $A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} f$. E.g. Lorentz gauge: $\partial_{\mu} A^{\mu}=0$. Physics is independent of choice of gauge, but some are sometimes more convenient than others along the way, depending on what's being done. In Lorentz gauge, the remaining Maxwell equations are $\partial_{\mu} \partial^{\mu} A^{\nu}=-\frac{1}{c} j^{\nu}$ (still some gauge freedom). In empty space we set $j^{\mu}=0$ and the plane wave solutions are $A^{\mu}=\epsilon^{\mu}(p) e^{i p \cdot x}$, where $p^{2}=0$ (massless) and $p \cdot \epsilon=0$. Can still shift $\epsilon^{\mu} \rightarrow \epsilon^{\mu}+\alpha p^{\mu}$, so 2 independent photon polarizations ϵ^{μ}. In D spacetime dimensions, there are $D-2$ independent polarizations.

