4/23/19 Lecture outline

* Reading: Zwiebach chapters 4,5,6.
- Last time: nonrelativistic strings. $\left[T_{0}\right]=[F]=[E] / L=\left[\mu_{0}\right]\left[v^{2}\right]$. Indeed, considering $F=m a$ for an element $d x$ of the string yields the string wave equation $\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{v_{0}^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0$, with $v_{0}=\sqrt{T_{0} / \mu_{0}}$. Endpoints at $x=0$ and $x=a$. Can choose Dirichlet or Neumann BCs at these points. With Dirichlet at each end, $y_{n}(x)=A_{n} \sin (n \pi x / a)$ and the general solution is $y(x, t)=\sum_{n} y_{n}(x) \cos \omega_{n} t$, where $\omega_{n}=v_{0} n \pi / a$ (and the A_{n} are determined from the initial conditions, by Fourier transform).

The nonrelativistic string action is $S=\int d t L$ where L is the kinetic energy minus potential energy, which gives

$$
S=\int d t \int d x\left(\frac{1}{2} \mu_{0}\left(\frac{\partial y}{\partial t}\right)^{2}-\frac{1}{2} T_{0}\left(\frac{\partial y}{\partial x}\right)^{2}\right)
$$

which is a particular case of the more general action $S=\int d t d x \mathcal{L}\left(\frac{\partial y}{\partial t}, \frac{\partial y}{\partial x}\right)$. We can then define the momentum density and corresponding spatial quantity

$$
\mathcal{P}^{t}=\frac{\partial \mathcal{L}}{\partial \dot{y}}, \quad \mathcal{P}^{x}=\frac{\partial \mathcal{L}}{\partial y^{\prime}} .
$$

The variation of the action is

$$
\delta S=\int d t d x\left[\mathcal{P}^{t} \delta \dot{y}+\mathcal{P}^{x} \delta y^{\prime}\right]=-\int d t d x\left[\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}\right] \delta y+\text { bndy terms }
$$

and the action is made stationary, $\delta S=0$, if the boundary terms vanish and if

$$
\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}=0
$$

which when applied to the above particular choice of action gives the usual wave equation. The boundary terms must also be set to zero, and they involve $\mathcal{P}^{t} \delta y$ at the time endpoints and $\mathcal{P}^{x} \delta y$ at the space endpoints. Neumann BCs is to set $\mathcal{P}^{x}=0$ at the spatial endpoints (for all t), and Dirichlet BCs is to set $\delta y=0$ (and thus $\mathcal{P}^{t}=0$) at the spatial endpoints.

Summary: string action: $S=\int d t d x \mathcal{L}\left(\frac{\partial y}{\partial t}, \frac{\partial y}{\partial x}\right)$, with momentum densities

$$
\mathcal{P}^{t}=\frac{\partial \mathcal{L}}{\partial \dot{y}}, \quad \mathcal{P}^{x}=\frac{\partial \mathcal{L}}{\partial y^{\prime}} .
$$

Least action gives the equations of motion

$$
\frac{\partial \mathcal{P}^{t}}{\partial t}+\frac{\partial \mathcal{P}^{x}}{\partial x}=0
$$

The non-relativistic string has $\mathcal{L}=\frac{1}{2} \mu_{0} \dot{y}^{2}-\frac{1}{2} T_{0} y^{\prime 2}$, which we're going to replace with a relativistic version. For guidance, noted that a relativistic point particle of mass m has $S=-m c \int d s=-m c^{2} \int d t \sqrt{1-v^{2} / c^{2}}$ and noted its reparametrization invariance: write $x_{\mu}(\tau)$, and can change worldline parameter τ to an arbitrary new parameterization $\tau^{\prime}(\tau)$, and the action is invariant. To see this use $S=-m c \int \sqrt{-\eta_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}}$ and change $\frac{d x^{\mu}}{d \tau}=\frac{d x^{\mu}}{d \tau^{\prime}} \frac{d \tau^{\prime}}{d \tau}$ and note that $S \rightarrow S$. Euler Lagrange equations of motion: $\frac{d p_{\mu}}{d \tau}=0$.

- As we discussed before, the action for a relativistic point particle of mass m is $S=$ $-m c \int d s=-m c^{2} \int d t \sqrt{1-v^{2} / c^{2}}$. This gives $\vec{p}=\partial_{\vec{v}}=\gamma m \vec{v}$ and $H=\vec{p} \cdot \vec{v}-L=\gamma m c^{2}$, both of which are constants of the motion (thanks to the time and spatial translation invariance). This has reparametrization invariance: write $x_{\mu}(\tau)$, and can change worldline parameter τ to an arbitrary new parameterization $\tau^{\prime}(\tau)$, and the action is invariant. To see this use $S=-m c \int \sqrt{-\eta_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}}$ and change $\frac{d x^{\mu}}{d \tau}=\frac{d x^{\mu}}{d \tau^{\prime}} \frac{d \tau^{\prime}}{d \tau}$ and note that $S \rightarrow S$. The Euler Lagrange equations of motion are $\frac{d p_{\mu}}{d \tau}=0$. When the particle is charged and in the presence of electric and magnetic fields, there is the new term in the action

$$
\begin{equation*}
S=\int\left(-m c d s+\frac{q}{c} A_{\mu} d x^{\mu}\right) \tag{1}
\end{equation*}
$$

which is manifestly relativistically invariant (and also reparameterization) invariant. Note also that, under a gauge transformation, we have $S \rightarrow S+\frac{q f}{c}$, which does not affect the equations of motion (just as changing the Lagrangian by a total time derivative does not).

The lagrangian is thus $L=-m c \sqrt{1-\vec{v}^{2} / c^{2}}+\frac{q}{c} \vec{v} \cdot \vec{A}-q \phi$. The momentum conjugate to \vec{r} is $\vec{P}=\partial L / \partial \vec{v}=m \vec{v} / \sqrt{1-\vec{v}^{2} / c^{2}}+\frac{q}{c} \vec{A}$. The Hamiltonian is $H=\vec{v} \cdot \vec{P}-L=$ $\sqrt{m^{2} c^{4}+c^{2}\left(\vec{P}-\frac{q}{c} \vec{A}\right)^{2}}+q \phi$. The equations of motion can be written as $\frac{d^{2} x^{\mu}}{d \tau^{2}}=\frac{q}{m c} F_{\mu \nu} \frac{d x^{\nu}}{d \tau}$. In the non-relativistic limit we have $H=\frac{1}{2 m}\left(\vec{P}-\frac{q}{c} \vec{A}\right)^{2}+q \phi$, where $\vec{P}-\frac{q}{c} \vec{A}=m \vec{v}$.

Recap: $S=-m c \int d s+\frac{q}{c} \int A_{\mu} d x^{\mu}$ for a relativistic point particle, where we can write $d s=\sqrt{-g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}} d \tau$, with $\equiv \frac{d}{d \tau}$, and τ is the arbitrary worldline parameter, with reparameterization symmetry $\tau \rightarrow \tau^{\prime}$.

- For a string world-sheet, we need two parameters, $\xi^{a}, a=1,2$. The string trajectory is $x: \Sigma \rightarrow M$, where Σ is the 2 d world-sheet, with local coordinates ξ^{a}, and M is the target space, with local coordinates x^{μ}. The worldsheet area element is $A=\int d^{2} \xi \sqrt{|h|}$, where $h_{a b}$ is the worldsheet metric, and $|h|$ is its determinant. Suppose that the target space has metric $g_{\mu \nu}$, with space-time length e.g. $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$. By writing $d x^{\mu}=\partial_{a} x^{\mu} d \xi^{a}$, we get

$$
d s^{2}=g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}} d \xi^{a} d \xi^{b}, \quad \text { so } \quad h_{a b}=g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}}
$$

where this $h_{a b}$ is called the induced metric. So the worldsheet area functional is

$$
A=\int d^{2} \xi \sqrt{\operatorname{det}_{a b}\left(g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}}\right)} .
$$

