
4/23/19 Lecture outline

⋆ Reading: Zwiebach chapters 4,5,6.

• Last time: nonrelativistic strings. [T0] = [F ] = [E]/L = [µ0][v
2]. Indeed, considering

F = ma for an element dx of the string yields the string wave equation ∂2y
∂x2 − 1

v2

0

∂2y
∂t2

= 0,

with v0 =
√

T0/µ0. Endpoints at x = 0 and x = a. Can choose Dirichlet or Neumann

BCs at these points. With Dirichlet at each end, yn(x) = An sin(nπx/a) and the general

solution is y(x, t) =
∑

n yn(x) cosωnt, where ωn = v0nπ/a (and the An are determined

from the initial conditions, by Fourier transform).

The nonrelativistic string action is S =
∫

dtL where L is the kinetic energy minus

potential energy, which gives

S =

∫

dt

∫

dx

(

1

2
µ0(

∂y

∂t
)2 − 1

2
T0(

∂y

∂x
)2
)

,

which is a particular case of the more general action S =
∫

dtdxL(∂y
∂t
, ∂y
∂x

). We can then

define the momentum density and corresponding spatial quantity

Pt =
∂L

∂ẏ
, Px =

∂L

∂y′
.

The variation of the action is

δS =

∫

dtdx[Ptδẏ + Pxδy′] = −

∫

dtdx[
∂Pt

∂t
+

∂Px

∂x
]δy + bndy terms

and the action is made stationary, δS = 0, if the boundary terms vanish and if

∂Pt

∂t
+

∂Px

∂x
= 0,

which when applied to the above particular choice of action gives the usual wave equation.

The boundary terms must also be set to zero, and they involve Ptδy at the time endpoints

and Pxδy at the space endpoints. Neumann BCs is to set Px = 0 at the spatial endpoints

(for all t), and Dirichlet BCs is to set δy = 0 (and thus Pt = 0) at the spatial endpoints.

Summary: string action: S =
∫

dtdxL(∂y
∂t
, ∂y
∂x

), with momentum densities

Pt =
∂L

∂ẏ
, Px =

∂L

∂y′
.

Least action gives the equations of motion

∂Pt

∂t
+

∂Px

∂x
= 0.
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The non-relativistic string has L = 1

2
µ0ẏ

2 − 1

2
T0y

′2, which we’re going to replace with

a relativistic version. For guidance, noted that a relativistic point particle of mass m

has S = −mc
∫

ds = −mc2
∫

dt
√

1− v2/c2 and noted its reparametrization invariance:

write xµ(τ), and can change worldline parameter τ to an arbitrary new parameterization

τ ′(τ), and the action is invariant. To see this use S = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ
and change

dxµ

dτ
= dxµ

dτ ′

dτ ′

dτ
and note that S → S. Euler Lagrange equations of motion:

dpµ

dτ
= 0.

• As we discussed before, the action for a relativistic point particle of mass m is S =

−mc
∫

ds = −mc2
∫

dt
√

1− v2/c2. This gives ~p = ∂~v = γm~v and H = ~p · ~v − L = γmc2,

both of which are constants of the motion (thanks to the time and spatial translation

invariance). This has reparametrization invariance: write xµ(τ), and can change worldline

parameter τ to an arbitrary new parameterization τ ′(τ), and the action is invariant. To

see this use S = −mc
∫

√

−ηµν
dxµ

dτ
dxν

dτ
and change dxµ

dτ
= dxµ

dτ ′

dτ ′

dτ
and note that S → S.

The Euler Lagrange equations of motion are
dpµ

dτ
= 0. When the particle is charged and

in the presence of electric and magnetic fields, there is the new term in the action

S =

∫

(−mcds+
q

c
Aµdx

µ), (1)

which is manifestly relativistically invariant (and also reparameterization) invariant. Note

also that, under a gauge transformation, we have S → S + qf
c
, which does not affect the

equations of motion (just as changing the Lagrangian by a total time derivative does not).

The lagrangian is thus L = −mc
√

1− ~v2/c2 + q
c
~v · ~A− qφ. The momentum conjugate

to ~r is ~P = ∂L/∂~v = m~v/
√

1− ~v2/c2 + q
c
~A. The Hamiltonian is H = ~v · ~P − L =

√

m2c4 + c2( ~P − q
c
~A)2+qφ. The equations of motion can be written as d2xµ

dτ2 = q
mc

Fµν
dxν

dτ
.

In the non-relativistic limit we have H = 1

2m
( ~P − q

c
~A)2 + qφ, where ~P − q

c
~A = m~v.

Recap: S = −mc
∫

ds + q
c

∫

Aµdx
µ for a relativistic point particle, where we can

write ds =
√

−gµν ẋµẋνdτ , with ˙≡ d
dτ
, and τ is the arbitrary worldline parameter, with

reparameterization symmetry τ → τ ′.

• For a string world-sheet, we need two parameters, ξa, a = 1, 2. The string trajectory

is x : Σ → M , where Σ is the 2d world-sheet, with local coordinates ξa, and M is the target

space, with local coordinates xµ. The worldsheet area element is A =
∫

d2ξ
√

|h|, where

hab is the worldsheet metric, and |h| is its determinant. Suppose that the target space has

metric gµν , with space-time length e.g. ds2 = gµνdx
µdxν . By writing dxµ = ∂ax

µdξa, we

get

ds2 = gµν
dxµ

dξa
dxν

dξb
dξadξb, so hab = gµν

dxµ

dξa
dxν

dξb
,
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where this hab is called the induced metric. So the worldsheet area functional is

A =

∫

d2ξ

√

det
ab

(gµν
dxµ

dξa
dxν

dξb
).
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