4/25/19 Lecture outline
\star Reading: Zwiebach chapters 4,5,6.

- Continue from last time: $S_{p . p .}=-m c \int d s=-m c \int \sqrt{-\eta_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}}$, proportional to the worldline length and reparameterization invariant under $\tau \rightarrow \tau^{\prime}(\tau)$. Likewise, for a string world-sheet, we need two parameters, $\xi^{a}, a=1,2$. The string trajectory is $x: \Sigma \rightarrow M$, where Σ is the 2 d world-sheet, with local coordinates ξ^{a}, and M is the target space, with local coordinates x^{μ}. The worldsheet area element is $A=\int d^{2} \xi \sqrt{|h|}$, where $h_{a b}$ is the worldsheet metric, and $|h|$ is its determinant. Suppose that the target space has metric $g_{\mu \nu}$, with space-time length e.g. $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$. By writing $d x^{\mu}=\partial_{a} x^{\mu} d \xi^{a}$, we get

$$
d s^{2}=g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}} d \xi^{a} d \xi^{b}, \quad \text { so } \quad h_{a b}=g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}}
$$

where this $h_{a b}$ is called the induced metric. So the worldsheet area functional is

$$
A=\int d^{2} \xi \sqrt{\operatorname{det}_{a b}\left(g_{\mu \nu} \frac{d x^{\mu}}{d \xi^{a}} \frac{d x^{\nu}}{d \xi^{b}}\right)} .
$$

For strings in Minkowski spacetime, we write it instead as $X^{\mu}(\tau, \sigma)$. There is also a needed minus sign, as the area element is $\sqrt{|g|}$, actually involves the absolute value of the determinant, and the determinant is negative (just like $\operatorname{det} \eta=-1$). So

$$
A=\int d \tau d \sigma \sqrt{\left(\frac{\partial X}{\partial \tau} \cdot \frac{\partial X}{\partial \sigma}\right)^{2}-\left(\frac{\partial X}{\partial \tau}\right)^{2}\left(\frac{\partial X}{\partial \sigma}\right)^{2}}
$$

where the spacetime indices are contracted with the metric $g_{\mu \nu}$. To get an action with $[S]=M L^{2} / T$, we have

$$
S_{N a m b u-G o t o}=-\frac{T_{0}}{c} \int_{\tau_{i}}^{\tau_{f}} d \tau \int d \sigma \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}
$$

where we define $\dot{X}^{\mu} \equiv \frac{d x^{\mu}}{d \tau}$ and $X^{\mu \prime} \equiv \frac{\partial X^{\mu}}{\partial \sigma}$ annd T_{0} is the string tension, with $\left[T_{0}\right]=$ $[F]=\left[M L / T^{2}\right]$.

The action is reparameterization invariant: can take $(\tau, \sigma) \rightarrow\left(\tau^{\prime}(\tau, \sigma), \sigma^{\prime}(\tau, \sigma)\right)$ and get $S \rightarrow S$. Enormous symmetry/redundancy in choice of (τ, σ); can "fix the gauge" to some convenient choice, and the physics is completely independent of the choice. This is crucial, since the worldsheet coordinates have no physical significance.

- We can write $S_{N G}=\int d^{2} \xi \mathcal{L}_{N G}$ with Lagrangian density

$$
\mathcal{L}_{N G}=-\frac{T_{0}}{c} \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}
$$

and we have

$$
\mathcal{P}_{\mu}^{\tau}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) X_{\mu}^{\prime}-\left(X^{\prime}\right)^{2} \dot{X}_{\mu}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}}
$$

and

$$
\mathcal{P}_{\mu}^{\sigma}=\frac{\partial \mathcal{L}}{\partial X^{\mu \prime}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) \dot{X}_{\mu}-(\dot{X})^{2} X_{\mu}^{\prime}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}}
$$

The condition $\delta S=0$ gives the Euler-Lagrange equations

$$
\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma}=0
$$

For the open string, $\delta S=0$ also requires $\int d \tau\left[\delta X^{\mu} P_{\mu}^{\sigma}\right]_{0}^{\sigma_{0}}=0$, which requires for each μ index either of the Dirichlet or Neumann BCs, at each end:

$$
\begin{array}{ll}
\text { Dirichlet } & \frac{\partial X^{\mu}}{\partial \tau}\left(\tau, \sigma_{*}\right)=0 \quad \rightarrow \quad \delta X^{\mu}\left(\tau, \sigma_{*}\right)=0 \\
& \text { Neumann } \quad \mathcal{P}_{\mu}^{\sigma}\left(\tau, \sigma_{*}\right)=0
\end{array}
$$

- Exploit $(\tau, \sigma) \rightarrow\left(\tau^{\prime}, \sigma^{\prime}\right)$ reparameterization invariance to pick useful "gauges", to simplify the above equations. We will discuss choices such that we can impose constraints

$$
\begin{equation*}
\dot{X} \cdot X^{\prime}=0 \quad \dot{X}^{2}+X^{\prime 2}=0 \tag{1}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
\mathcal{P}^{\tau \mu}=\frac{1}{2 \pi \alpha^{\prime}} \dot{X}^{\mu} \quad \mathcal{P}^{\sigma \mu}=-\frac{1}{2 \pi \alpha^{\prime}} X^{\mu^{\prime}} \tag{2}
\end{equation*}
$$

and then the EOM is simply a wave equation:

$$
\begin{equation*}
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=0 \tag{3}
\end{equation*}
$$

Now let's explain these things in more detail. - We will motivate the above choice by discussing in more detail the interpretation of $X^{\mu}(\tau, \sigma)$. Consider the tangent vectors $\partial_{\tau} X^{\mu}$ and $\partial_{\sigma} X^{\mu}$; aside from isolated points, we can and will choose τ and σ such that they are timeline and space-like, respectively. Take $v^{\mu}(\lambda)=\partial_{\tau} X^{\mu}+\lambda \partial_{\sigma} X^{\mu}$, so $v^{2}=$ $(\dot{X})^{2}+2 \lambda \dot{X} \cdot X^{\prime}+\lambda^{2}\left(X^{\prime}\right)^{2}$ which can be either positive or negative, so there must be two real λ solutions to the condition $v^{2}=0$; the condition that this is true is that the descriminant of the quadratic equation must be positive, and that is precisely what is inside the $\sqrt{ } \cdot$ in $\mathcal{L}_{N G}$.

Since \dot{X}^{μ} is timelike, we can choose static gauge, where $\tau=t$. Verify sign inside $\sqrt{ }$. in this case: $X^{\mu^{\prime}}=\left(0, \vec{X}^{\prime}\right), \dot{X}^{\mu}=(c, \dot{\vec{X}})$, take e.g. $\dot{\vec{X}}=0$ to get $\sqrt{\cdot}=c\left|\vec{X}^{\prime}\right|$.

- Consider example of $X^{\mu}(\sigma, \tau)=(c \tau, f(\sigma), 0, \ldots 0)$. So $\dot{X}^{\mu}=(c, \overrightarrow{0})$ and $X^{\prime \mu}=$ $\left(0, f^{\prime}(\sigma), 0, \ldots, 0\right)$. Verify that the EOM are satisfied. Compute the action and note that $V=T_{0} a$ where a is the length of the string.

