\star Reading: Zwiebach chapters 4,5,6.

• Continue from last time: $S_{p.p.} = -mc \int ds = -mc \int \sqrt{-\eta_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}}$, proportional to the worldline length and reparameterization invariant under $\tau \to \tau'(\tau)$. Likewise, for a string world-sheet, we need two parameters, ξ^a , a=1,2. The string trajectory is $x:\Sigma\to M$, where Σ is the 2d world-sheet, with local coordinates ξ^a , and M is the target space, with local coordinates x^{μ} . The worldsheet area element is $A=\int d^2\xi \sqrt{|h|}$, where h_{ab} is the worldsheet metric, and |h| is its determinant. Suppose that the target space has metric $g_{\mu\nu}$, with space-time length e.g. $ds^2=g_{\mu\nu}dx^{\mu}dx^{\nu}$. By writing $dx^{\mu}=\partial_a x^{\mu}d\xi^a$, we get

$$ds^2 = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^a} \frac{dx^{\nu}}{d\xi^b} d\xi^a d\xi^b,$$
 so $h_{ab} = g_{\mu\nu} \frac{dx^{\mu}}{d\xi^a} \frac{dx^{\nu}}{d\xi^b},$

where this h_{ab} is called the induced metric. So the worldsheet area functional is

$$A = \int d^2 \xi \sqrt{\det_{ab}(g_{\mu\nu}\frac{dx^{\mu}}{d\xi^a}\frac{dx^{\nu}}{d\xi^b})}.$$

For strings in Minkowski spacetime, we write it instead as $X^{\mu}(\tau, \sigma)$. There is also a needed minus sign, as the area element is $\sqrt{|g|}$, actually involves the absolute value of the determinant, and the determinant is negative (just like det $\eta = -1$). So

$$A = \int d\tau d\sigma \sqrt{(\frac{\partial X}{\partial \tau} \cdot \frac{\partial X}{\partial \sigma})^2 - (\frac{\partial X}{\partial \tau})^2 (\frac{\partial X}{\partial \sigma})^2},$$

where the spacetime indices are contracted with the metric $g_{\mu\nu}$. To get an action with $[S] = ML^2/T$, we have

$$S_{Nambu-Goto} = -\frac{T_0}{c} \int_{\tau_i}^{\tau_f} d\tau \int d\sigma \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

where we define $\dot{X}^{\mu} \equiv \frac{dx^{\mu}}{d\tau}$ and $X^{\mu\prime} \equiv \frac{\partial X^{\mu}}{\partial \sigma}$ annuly T_0 is the string tension, with $[T_0] = [F] = [ML/T^2]$.

The action is reparameterization invariant: can take $(\tau, \sigma) \to (\tau'(\tau, \sigma), \sigma'(\tau, \sigma))$ and get $S \to S$. Enormous symmetry/redundancy in choice of (τ, σ) ; can "fix the gauge" to some convenient choice, and the physics is completely independent of the choice. This is crucial, since the worldsheet coordinates have no physical significance.

• We can write $S_{NG} = \int d^2 \xi \mathcal{L}_{NG}$ with Lagrangian density

$$\mathcal{L}_{NG} = -\frac{T_0}{c} \sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2},$$

and we have

$$\mathcal{P}^{\tau}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') X'_{\mu} - (X')^2 \dot{X}_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}},$$

and

$$\mathcal{P}^{\sigma}_{\mu} = \frac{\partial \mathcal{L}}{\partial X^{\mu \prime}} = -\frac{T_0}{c} \frac{(\dot{X} \cdot X') \dot{X}_{\mu} - (\dot{X})^2 X'_{\mu}}{\sqrt{(\dot{X} \cdot X')^2 - (\dot{X})^2 (X')^2}}.$$

The condition $\delta S = 0$ gives the Euler-Lagrange equations

$$\frac{\partial \mathcal{P}^{\tau}_{\mu}}{\partial \tau} + \frac{\partial \mathcal{P}^{\sigma}_{\mu}}{\partial \sigma} = 0.$$

For the open string, $\delta S = 0$ also requires $\int d\tau [\delta X^{\mu} P_{\mu}^{\sigma}]_{0}^{\sigma_{0}} = 0$, which requires for each μ index either of the Dirichlet or Neumann BCs, at each end:

Dirichlet
$$\frac{\partial X^{\mu}}{\partial \tau}(\tau, \sigma_*) = 0 \rightarrow \delta X^{\mu}(\tau, \sigma_*) = 0,$$

Neumann $\mathcal{P}^{\sigma}_{\mu}(\tau, \sigma_*) = 0.$

• Exploit $(\tau, \sigma) \to (\tau', \sigma')$ reparameterization invariance to pick useful "gauges", to simplify the above equations. We will discuss choices such that we can impose constraints

$$\dot{X} \cdot X' = 0 \qquad \dot{X}^2 + X'^2 = 0. \tag{1}$$

In this case, we have

$$\mathcal{P}^{\tau\mu} = \frac{1}{2\pi\alpha'}\dot{X}^{\mu} \qquad \mathcal{P}^{\sigma\mu} = -\frac{1}{2\pi\alpha'}X^{\mu'}, \tag{2}$$

and then the EOM is simply a wave equation:

$$(\partial_{\tau}^2 - \partial_{\sigma}^2)X^{\mu} = 0. \tag{3}$$

Now let's explain these things in more detail. • We will motivate the above choice by discussing in more detail the interpretation of $X^{\mu}(\tau,\sigma)$. Consider the tangent vectors $\partial_{\tau}X^{\mu}$ and $\partial_{\sigma}X^{\mu}$; aside from isolated points, we can and will choose τ and σ such that they are timeline and space-like, respectively. Take $v^{\mu}(\lambda) = \partial_{\tau}X^{\mu} + \lambda \partial_{\sigma}X^{\mu}$, so $v^2 = (\dot{X})^2 + 2\lambda\dot{X} \cdot X' + \lambda^2(X')^2$ which can be either positive or negative, so there must be two real λ solutions to the condition $v^2 = 0$; the condition that this is true is that the descriminant of the quadratic equation must be positive, and that is precisely what is inside the $\sqrt{\cdot}$ in \mathcal{L}_{NG} .

Since \dot{X}^{μ} is timelike, we can choose static gauge, where $\tau=t$. Verify sign inside $\sqrt{\cdot}$ in this case: $X^{\mu'}=(0,\vec{X}'), \ \dot{X}^{\mu}=(c,\dot{\vec{X}}), \ \text{take e.g.} \ \dot{\vec{X}}=0 \ \text{to get} \ \sqrt{\cdot}=c|\vec{X}'|.$

• Consider example of $X^{\mu}(\sigma,\tau) = (c\tau, f(\sigma), 0, ...0)$. So $\dot{X}^{\mu} = (c,\vec{0})$ and $X^{'\mu} = (0, f'(\sigma), 0, ..., 0)$. Verify that the EOM are satisfied. Compute the action and note that $V = T_0 a$ where a is the length of the string.