4/30/19 Lecture outline

* Reading: Zwiebach chapters 4-7.
- Recall from last time:

$$
\mathcal{L}_{N G}=-\frac{T_{0}}{c} \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}},
$$

and we have

$$
\mathcal{P}_{\mu}^{\tau}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) X_{\mu}^{\prime}-\left(X^{\prime}\right)^{2} \dot{X}_{\mu}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}}
$$

and

$$
\mathcal{P}_{\mu}^{\sigma}=\frac{\partial \mathcal{L}}{\partial X^{\mu \prime}}=-\frac{T_{0}}{c} \frac{\left(\dot{X} \cdot X^{\prime}\right) \dot{X}_{\mu}-(\dot{X})^{2} X_{\mu}^{\prime}}{\sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-(\dot{X})^{2}\left(X^{\prime}\right)^{2}}} .
$$

The condition $\delta S=0$ gives the Euler-Lagrange equations

$$
\frac{\partial \mathcal{P}_{\mu}^{\tau}}{\partial \tau}+\frac{\partial \mathcal{P}_{\mu}^{\sigma}}{\partial \sigma}=0
$$

For open strings, $\delta S=0$ requires $\int d \tau\left[\delta X^{\mu} P_{\mu}^{\sigma}\right]_{0}^{\sigma_{0}}=0$, which requires for each μ index either of the Dirichlet (fixed) or Neumann (free) BCs, at each end:

$$
\text { Dirichlet } \quad \frac{\partial X^{\mu}}{\partial \tau}\left(\tau, \sigma_{*}\right)=0 \quad \rightarrow \quad \delta X^{\mu}\left(\tau, \sigma_{*}\right)=0
$$

$$
\text { Neumann } \quad \mathcal{P}_{\mu}^{\sigma}\left(\tau, \sigma_{*}\right)=0
$$

Exploit $(\tau, \sigma) \rightarrow\left(\tau^{\prime}, \sigma^{\prime}\right)$ reparameterization invariance to pick useful "gauges", to simplify the above equations. We will eventually choose such that we can impose constraints

$$
\begin{equation*}
\dot{X} \cdot X^{\prime}=0 \quad \dot{X}^{2}+X^{\prime 2}=0, \quad \text { i.e. } \quad\left(\dot{X} \pm X^{\prime}\right)^{2}=0 \tag{1}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
\mathcal{P}^{\tau \mu}=\frac{1}{2 \pi \alpha^{\prime}} \dot{X}^{\mu} \quad \mathcal{P}^{\sigma \mu}=-\frac{1}{2 \pi \alpha^{\prime}} X^{\mu^{\prime}} \tag{2}
\end{equation*}
$$

and then the EOM is simply a wave equation:

$$
\begin{equation*}
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=0 \tag{3}
\end{equation*}
$$

Start with static gauge: $\tau=t$, so $\dot{X}^{\mu}=(c, \vec{v})$ and $X^{\prime \mu}=\left(0, \vec{X}^{\prime}\right)$.

- In static gauge, let $d s \equiv|d \vec{X}|_{t=\text { const }}=\left|\partial_{\sigma} \vec{X}\right||d \sigma|$ be the length element of the string for σ varying over $d \sigma$ at fixed $t=\tau$. Note that $\partial_{s} \vec{X}$ is a unit vector, which is spacelike since
it is along $d \sigma$, i.e. along the string. The transverse velocity to the string is the component of $\partial_{t} \vec{X}$ that is perpendicular to this unit vector: $\vec{v}_{\perp}=\partial_{t} \vec{X}-\left(\partial_{t} \vec{X} \cdot \partial_{s} \vec{X}\right) \partial_{s} \vec{X}$.
- Note that $\left(\dot{X} \cdot X^{\prime}\right)^{2}-\dot{X}^{2}\left(X^{\prime}\right)^{2}=\left(\frac{d s}{d \sigma}\right)^{2}\left(c^{2}-v_{\perp}^{2}\right)$, so $S_{N G}$ has $L_{N G}=-T_{0} \int d s \sqrt{1-v_{\perp}^{2} / c^{2}}$. This fits with $L_{r e l, p p}=-m c \sqrt{1-v^{2} / c^{2}}$. Note that

$$
\begin{gathered}
\mathcal{P}^{\sigma \mu}=-\frac{T_{0}}{c^{2}} \frac{\left(\partial_{s} \vec{X} \cdot \partial_{t} \vec{X}\right) \dot{X}^{\mu}+\left(c^{2}-\left(\partial_{t} \vec{X}\right)^{2}\right) \partial_{s} X^{\mu}}{\sqrt{1-v_{\perp}^{2} / c^{2}}} \\
\mathcal{P}^{\tau \mu}=\frac{T_{0}}{c^{2}} \frac{d s}{d \sigma} \frac{\dot{X}^{\mu}-\left(\partial_{s} \vec{X} \cdot \partial_{t} \vec{X}\right) \partial_{s} X^{\mu}}{\sqrt{1-v_{\perp}^{2} / c^{2}}}
\end{gathered}
$$

- Free, Neuman BCs, P_{μ}^{σ} for the $\mu=0$ component implies that endpoints move transversely, $\partial_{s} \vec{X} \cdot \partial_{t} \vec{X}=0$, so $\vec{v}_{\perp}=\vec{v}$. The condition $\vec{P}^{\sigma}=0$ at the endpoints implies that the speed of light, $v=c$, for the free (Neuman) BCs.
- Step 2 (Z, chapter 7): we can choose σ such that $\partial_{\sigma} \vec{X} \cdot \partial_{t} \vec{X}=0$ along entire string (we saw it above for Neumann endpoints). The interpretation is that we take the timelike and spacelike vectors \dot{X}^{μ} and $X^{\prime \mu}$ to be orthogonal. This gives $\vec{v}_{\perp}=\vec{v} \equiv \dot{\vec{X}}$ along the entire string. Then $\mathcal{P}^{\tau \mu}=\frac{T_{0}}{c^{2}} \frac{d s}{d \sigma} \gamma \partial_{t} X^{\mu}$ and $\mathcal{P}^{\sigma \mu}=-T_{0} \gamma^{-1} \partial_{s} X^{\mu}$, with $\gamma \equiv 1 / \sqrt{1-v_{\perp}^{2} / c^{2}}$.

Now consider the $\mu=0$ component of the EOM: $\partial_{t} \mathcal{P}^{\tau \mu}=-\partial_{\sigma} \mathcal{P}^{\sigma \mu}$, which for $\mu=0$ gives that $\left(T_{0} / c\right) \frac{d s}{d \sigma} \gamma$ is a constant of the motion. Indeed this is proportional to the energy of an element of string. In a HW you will show that the string Hamiltonian is indeed $H=\int T_{0} d s / \sqrt{1-v_{\perp}^{2} / c^{2}}$.

Now the space components of the EOM can be written as $\mu_{e f f} \partial_{t} \vec{v}_{\perp}=\partial_{s}\left(T_{e f f} \partial_{s} \vec{X}\right)$, with $T_{e f f}=T_{0} / \gamma$ and $\mu_{e f f}=T_{0} \gamma / c^{2}$.

- Since $\frac{d s}{d \sigma} \gamma$ is a constant, we can choose our σ parameterization to set it equal to 1 . So $\left(\frac{d s}{d \sigma}\right)^{2}+c^{-2} v_{\perp}^{2}=1$. This can be written as the constraint: $\left(\partial_{\sigma} \vec{X}\right)^{2}+\left(\partial_{X_{0}} \vec{X}\right)^{2}=1$.
- Summary: choose σ parameterization such that

$$
\partial_{\sigma} \vec{X} \cdot \partial_{\tau} \vec{X}=0 \quad \text { and } \quad d \sigma=\frac{d s}{\sqrt{1-v_{\perp}^{2} / c^{2}}}=\frac{d E}{T_{0}}
$$

(Using $H=\int T_{0} d s / \sqrt{1-v_{\perp}^{2} / c^{2}}$ and $\partial_{t}\left(d s / \sqrt{1-v_{\perp}^{2} / c^{2}}\right)=0$.) The last equation above is equivalent to $\left(\partial_{\sigma} \vec{X}\right)^{2}+c^{-2}\left(\partial_{t} \vec{X}\right)^{2}=1$. With this worldsheet gauge choice,

$$
\mathcal{P}^{\tau \mu}=\frac{T_{0}}{c^{2}} \partial_{t} X^{\mu}=\frac{T^{0}}{c^{2}}\left(c, \vec{v}_{\perp}\right), \quad \mathcal{P}^{\sigma, \mu}=-T_{0} \partial_{\sigma} X^{\mu}=\left(0,-T_{0} \partial_{\sigma} \vec{X}\right)
$$

We can write this as

$$
\begin{equation*}
\mathcal{P}^{\tau \mu}=\frac{1}{2 \pi \alpha^{\prime}} \dot{X}^{\mu} \quad \mathcal{P}^{\sigma \mu}=-\frac{c^{2}}{2 \pi \alpha^{\prime}} X^{\mu^{\prime}} \tag{4}
\end{equation*}
$$

and then the EOM is simply a linear wave equation, and we also need to impose the constraints:

$$
\begin{equation*}
\left(\partial_{\tau}^{2}-c^{2} \partial_{\sigma}^{2}\right) X^{\mu}=0, \quad\left(\dot{X} \pm X^{\prime}\right)^{2}=0 \tag{5}
\end{equation*}
$$

- Solution of the EOM for open string with free (N) BCs at each end. Write the solution of the EOM as $\vec{X}(t, \sigma)=\frac{1}{2}(\vec{F}(c t+\sigma)+G(c t-\sigma))$. The BC at $\sigma=0$ gives $F^{\prime}(c t)=G^{\prime}(c t)$, which implies $G=F+$ const, and the constant can be absorbed into F so $\vec{X}(t, \sigma)=\frac{1}{2}(\vec{F}(c t+\sigma)+\vec{F}(c t-\sigma))$ where the open string has $\sigma \in\left[0, \sigma_{1}\right]$ and (1) implies that $\left|\frac{d \vec{F}(u)}{d u}\right|^{2}=1$, and $\left.\vec{X}^{\prime}\right|_{\text {ends }}=0$ implies $\vec{F}\left(u+2 \sigma_{1}\right)=\vec{F}(u)+2 \sigma_{1} \vec{v}_{0} / c$. Note $\vec{F}(u)$ is the position of the $\sigma=0$ end at time u / c. Then show that \vec{v}_{0} is the average velocity of any point σ on the string over time interval $2 \sigma_{1} / c$. Observing motion of $\sigma=0$ end over that Δt, together with E, gives motion of string for all t. Example from book: $\vec{X}(t, \sigma=$ $0)=\frac{\ell}{2}(\cos \omega t, \sin \omega t)$. Find $\vec{F}(u)=\frac{\sigma_{1}}{\pi}\left(\cos \pi u / \sigma_{1}, \sin \pi u / \sigma_{1}\right)$, with $\vec{v}_{0}=0$. $\left|\frac{d \vec{F}}{d u}\right|^{2}=1$ gives $\ell=2 c / \omega=2 E / \pi T_{0}$. Finally, $\vec{X}(t, \sigma)=\frac{\sigma_{1}}{\pi} \cos \left(\pi \sigma / \sigma_{1}\right)\left(\cos \left(\pi c t / \sigma_{1}\right), \sin \left(\pi c t / \sigma_{1}\right)\right)$.

