1. The adjoint rep

(a) Using the Jacobi identity, verify that $\left(T^{a}\right)^{b c}=-i f^{a b c}$ satisfies the Lie algebra's commutation relations. This is the adjoint representation.
(b) Write out adjoint rep for $S U(2)$ and verify that it agrees with the $\langle j=1, m| J^{a} \mid j=$ $\left.1, m^{\prime}\right\rangle$ for $\hbar=1$ matrix elements for all $a=1,2,3$ (recall that $m= \pm 1 \sim(x \pm i y)$.
(c) A general property of the adjoint rep is that its tensor product with any other rep includes that rep. Verify this property for the case of $S U(2)$ (it's enough to quote the known rules for addition of angular momentum).
2. The fundamental rep of $S U(3)$ has generators $T^{a}=\frac{1}{2} \lambda^{a}$ where λ^{a} are the 3×3 GellMann matrices. Please look at the Wikipedia entry for Gell-Mann matrices to see the λ^{a}, and also the $f^{a b c}$ for $S U(3)$.
(a) Think of $\left(T^{a}\right)^{i j}=\langle j| T^{a}|i\rangle$ with $i=1,2,3$. The $|i\rangle$ are chosen to be eigenstates of T^{3} and T^{8}. The eigenvalues are called the weights of the representation. For $S U(2)$, the weights are the values of m, running from $-\frac{1}{2} j, \ldots+\frac{1}{2} j$ for the rep labelled by j. For $S U(3)$, the weights are a 2 d vector $\left(m_{1}, m_{2}\right)$, which are the eigenvalues of T^{3} and T^{8}. Plot the weights of the fundamental rep of $S U(3)$, with m_{1} on the x axis and m_{2} on the y axis.
(b) Under a unitary transformation, the fundamental transforms as $|i\rangle \rightarrow U^{i}{ }_{j}|j\rangle$. Let $|\bar{i}\rangle=|i\rangle^{*}$, this is called the anti-fundamental rep; note that the anti-fundamental rep thus has generators $T_{\text {anti-fund }}^{a}=-\left(T_{\text {fund }}^{a}\right)^{*}$, and that this satisfies the commutation relations. Plot the weights of the anti-fundamental rep of $S U(3)$.
(c) For general $S U(N)$, the tensor product of the fundamental and the antifundamental equals the trivial rep plus the adjoint rep. For $S U(2)$ this is the addition of angular momentum formula $\left(j=\frac{1}{2}\right) \otimes\left(j=\frac{1}{2}\right)=(j=0) \oplus(j=1)$, which we can also write as $2 \times 2=1+3$. The analog for $S U(N)$ is $N \times \bar{N}=1+\operatorname{adj}$ where N is the fundamental and \bar{N} is the anti-fundamental. The weights of the tensor product of two reps is the sum of all of the weights (generalizing $m_{t o t}=m_{1}+m_{2}$ in addition of angular momentum). Using this, and the results of the previous parts, plot the weights of the adjoint of $S U(3)$.
3. Consider $S U(N)$ and let's introduce the notation that upper indices $i=1 \ldots N$ refer to the fundamental, and lower indices $i=1 \ldots N$ denotes the anti-fundamental. So x^{i} is a fundamental and y_{i} is an anti-fundamental. An object $x^{i j}$ is in the $N \times N$ tensor product. This rep is reducible because we can impose either $x^{i j}= \pm x^{j i}$, correspondingly $N \times N=\frac{1}{2} N(N+1)+\frac{1}{2} N(N-1)$. For $S U(3)$, this is $3 \times 3=6+\overline{3}$. Plot the weights for both sides of this multiplication rule.

