215c Homework exercises 4, Spring 2020, due May 1

- 1. The k = 1 instanton solution of su(2) Yang-Mills was discussed in lecture, and can be found in eqn. 2.51 (p. 53) in Tong's notes.
 - (a) Verify that this A_{μ} leads to the $F_{\mu\nu}$ given on the following line.

(b) Verify that this leads to $S_{inst} = 8\pi^2/g^2$. Feel free to use $\int d^4x \frac{(x^2)^n}{(x^2+1)^m} = \pi^2 \frac{\Gamma(n+2)\Gamma(m-n-2)}{\Gamma(m)}$.

- 2. For $x \to \infty$, the k = 1 instanton has $A_{\mu} \to U(i\partial_{\mu})U^{-1}$ with $U = x_{\mu}\sigma^{\mu}/\sqrt{x^2}$ and $\sigma^{\mu} = (1, -i\vec{\sigma})$. Define also $\bar{\sigma}^{\mu} = (1, i\vec{\sigma})$. The k = -1 anti-instanton has $A_{\mu} \to U(i\partial_{\mu})U^{-1}$ with $U = x_{\mu}\bar{\sigma}^{\mu}/\sqrt{x^2}$. Comparing with the expression for A_{μ} in terms of $\eta^a_{\mu\nu}\sigma^a$, relate that quantity to σ^{μ} and $\bar{\sigma}^{\mu}$. Likewise, for the the anti-instanton, relate its $\bar{\eta}^a_{\mu\nu}\sigma^a$ to σ^{μ} and σ^{ν} .
- 3. Review the chiral spinor notation from my online lecture notes from 215a, on Nov. 20, 2019, e.g. take the basis $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}$, and notice that replacing the σ^{μ}_{there} with the σ^{μ}_{here} gives γ^{μ} that satisfies the Euclidean Dirac algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\delta^{\mu\nu}$ and $\gamma^{5} \equiv \gamma^{1}\gamma^{2}\gamma^{3}\gamma^{4} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Write the 4-component spinor as $\Psi = \begin{pmatrix} \psi_{\alpha} \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix}$ where $\alpha = 1, 2$ and $\dot{\alpha} = 1, \dot{2}$. Note that $\mathcal{D}\Psi = \begin{pmatrix} 0 & D_{\mu}\sigma^{\mu} \\ D_{\mu}\bar{\sigma}^{\mu} & 0 \end{pmatrix} \begin{pmatrix} \psi \\ \bar{\chi} \end{pmatrix}$ and the offdiagonal entries show that $D_{\mu}\bar{\sigma}_{\mu}$ acts on a left-handed Fermion to give a right-handed Fermion component, while $D_{\mu}\sigma_{\mu}$ acts on a right-handed Fermion component to give a left-handed Fermion component. And if the Fermion is massless, the Dirac equation separates into $\bar{\sigma}_{\mu}D_{\mu}\psi = 0$ and $\sigma_{\mu}D_{\mu}\bar{\chi} = 0$.

Recall that $M^{\mu\nu} = \frac{1}{4} [\gamma^{\mu}, \gamma^{\nu}]$ gives the spinor representation of the Lorentz group. Write out this $M^{\mu\nu}$ in terms of σ^{μ} and $\bar{\sigma}^{\mu}$. You should find that it is reducible, corresponding to the fact that the Dirac spinor can be decomposed into chiral and anti-chiral parts. Compare the results with those of the previous question. Using the statement that $\eta^{a}_{\mu\nu}$ is self-dual and $\bar{\eta}^{a}_{\mu\nu}$ is anti-self dual, you can infer that the spinor representation of $M_{\mu\nu}$ has decomposed into self-dual and anti-self dual parts. Is the self-dual part associated with left-handed chiral, or right? (Different references use different conventions.)