1. The $k=1$ instanton solution of $s u(2)$ Yang-Mills was discussed in lecture, and can be found in eqn. 2.51 (p. 53) in Tong's notes.
(a) Verify that this A_{μ} leads to the $F_{\mu \nu}$ given on the following line.
(b) Verify that this leads to $S_{\text {inst }}=8 \pi^{2} / g^{2}$. Feel free to use $\int d^{4} x \frac{\left(x^{2}\right)^{n}}{\left(x^{2}+1\right)^{m}}=$ $\pi^{2} \frac{\Gamma(n+2) \Gamma(m-n-2)}{\Gamma(m)}$.
2. For $x \rightarrow \infty$, the $k=1$ instanton has $A_{\mu} \rightarrow U\left(i \partial_{\mu}\right) U^{-1}$ with $U=x_{\mu} \sigma^{\mu} / \sqrt{x^{2}}$ and $\sigma^{\mu}=$ $(1,-i \vec{\sigma})$. Define also $\bar{\sigma}^{\mu}=(1, i \vec{\sigma})$. The $k=-1$ anti-instanton has $A_{\mu} \rightarrow U\left(i \partial_{\mu}\right) U^{-1}$ with $U=x_{\mu} \bar{\sigma}^{\mu} / \sqrt{x^{2}}$. Comparing with the expression for A_{μ} in terms of $\eta_{\mu \nu}^{a} \sigma^{a}$, relate that quantity to σ^{μ} and $\bar{\sigma}^{\mu}$. Likewise, for the the anti-instanton, relate its $\bar{\eta}_{\mu \nu}^{a} \sigma^{a}$ to σ^{μ} and σ^{ν}.
3. Review the chiral spinor notation from my online lecture notes from 215a, on Nov. 20, 2019, e.g. take the basis $\gamma^{\mu}=\left(\begin{array}{cc}0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0\end{array}\right)$, and notice that replacing the $\sigma_{\text {there }}^{\mu}$ with the $\sigma_{\text {here }}^{\mu}$ gives γ^{μ} that satisfies the Euclidean Dirac algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \delta^{\mu \nu}$ and $\gamma^{5} \equiv \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{4}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Write the 4 -component spinor as $\Psi=\binom{\psi_{\alpha}}{\bar{\chi}^{\dot{\alpha}}}$ where $\alpha=1,2$ and $\dot{\alpha}=\dot{1}, \dot{2}$. Note that $\not D \Psi=\left(\begin{array}{cc}0 & D_{\mu} \sigma^{\mu} \\ D_{\mu} \bar{\sigma}^{\mu} & 0\end{array}\right)\binom{\psi}{\bar{\chi}}$ and the offdiagonal entries show that $D_{\mu} \bar{\sigma}_{\mu}$ acts on a left-handed Fermion to give a right-handed Fermion component, while $D_{\mu} \sigma_{\mu}$ acts on a right-handed Fermion component to give a left-handed Fermion component. And if the Fermion is massless, the Dirac equation separates into $\bar{\sigma}_{\mu} D_{\mu} \psi=0$ and $\sigma_{\mu} D_{\mu} \bar{\chi}=0$.
Recall that $M^{\mu \nu}=\frac{1}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ gives the spinor representation of the Lorentz group. Write out this $M^{\mu \nu}$ in terms of σ^{μ} and $\bar{\sigma}^{\mu}$. You should find that it is reducible, corresponding to the fact that the Dirac spinor can be decomposed into chiral and anti-chiral parts. Compare the results with those of the previous question. Using the statement that $\eta_{\mu \nu}^{a}$ is self-dual and $\bar{\eta}_{\mu \nu}^{a}$ is anti-self dual, you can infer that the spinor representation of $M_{\mu \nu}$ has decomposed into self-dual and anti-self dual parts. Is the self-dual part associated with left-handed chiral, or right? (Different references use different conventions.)
