215c Homework exercises 6, Spring 2020, due May 18

- 1. Consider a gauge theory with general gauge group G and a Dirac Fermion in a general representation r. Consider the process $\psi + g \rightarrow \psi + g$ at tree-level, where g denotes the gauge field. Write down the tree-level amplitude and verify that it vanishes if the polarization of either external gluon is longitudinal, i.e. equal to its momentum. Hint: there is an extra diagram as compared with QED, which is important because the order of the group generators in other diagrams matters for non-Abelian groups.
- 2. The group SU(5) contains $SU(3) \times SU(2) \times U(1)$ as a subgroup. The fundamental representation of SU(5) is the **5**, which we can write as $\psi^{c=1...5}$, and the antifundamental is the $\bar{5}$ which we can write as $\tilde{\psi}_{c=1...5}$. Some multiplication rules are $\mathbf{5} \times \mathbf{5} = \mathbf{10}_A + \mathbf{15}_S$, where the subscripts are for the anti-symmetric and symmetric products, $\psi_{10}^{cd} = -\psi_{10}^{dc}$ and $\psi_{15}^{cd} = \psi_{15}^{dc}$. Also, $\mathbf{5} \times \mathbf{\bar{5}} = \mathbf{1} + \mathbf{24}$, where the **1** is δ_d^c and $(\psi_{24})_d^c$ is traceless, $(\psi_{24})_c^c = 0$, and it is the adjoint representation.

(a) Under $SU(5) \to SU(3) \times SU(2) \times U(1)$, the fundamental decomposes as $\mathbf{5} \to (\mathbf{3}, 1)_{q_3} + (1, \mathbf{2})_{q_2}$, where q_3 and q_2 are the U(1) charge. Write the U(1) generator in terms of the $(\psi_{24})_c^c = 0$ and, using also the normalization condition that $\operatorname{Tr}(T^a T^b) = \frac{1}{2} \delta^{ab}$ for the fundamental, determine q_3 and q_2 .

(b) Write the similar decompositions of $\overline{\mathbf{5}}$, $\mathbf{10}$, and $\mathbf{24}$ under $SU(5) \to SU(3) \times SU(2) \times U(1)$. Recall that $2 \cong \overline{2}$ for SU(2).

(c) The fermions in a generation of the SM are in the $SU(3) \times SU(2) \times U(1)_Y$ representations $(3,2)_{1/3} + (\bar{3},1)_{-4/3} + (\bar{3},1)_{2/3} + (1,2)_{-1} + (1,1)_2$. Compare with the results from the previous parts and thus show that they fit into SU(5) representations.

(d) Using the results from the previous parts, write down the $SU(3) \times SU(2) \times U(1)_Y$ representations of the missing SU(5) gauge fields, that are not in $SU(3) \times SU(2) \times U(1)_Y$.

3. Consider a massless, Dirac Fermion ψ in a general representation r of a general non-Abelian gauge group G, with $\mathcal{L} = \bar{\psi}i \not D \psi - \frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu}$. Use the Feynman rules to write down the one-loop correction to the Fermion's propagator. Note that the result is similar to the one-loop correction to the electron's propagator in QED, up to a difference in the group theory factors that you should determine. Using this, relate the anomalous dimension of the Fermion in representation r to the anomalous dimension of the electron in QED (which you might have computed last quarter).