1. Practice computing anomaly coefficients:

As will be discussed next week, anomalies in four spacetime dimensions are proportional to $\operatorname{Tr}\left(\left\{G_{1}, G_{2}\right\} G_{3}\right)$, where $G_{1,2,3}$ are any symmetries and Tr runs over all of the massless, left-handed, chiral Fermions. If a Fermion is in representation (r_{1}, r_{2}, r_{3}) of groups G_{1}, G_{2}, G_{3}, then $\operatorname{Tr}\left(G_{1} G_{2} G_{3}\right) \rightarrow \operatorname{Tr}\left(\left\{T_{r_{1}}^{a_{1}}, T_{r_{2}}^{a_{2}}\right\} T_{r_{3}}^{a_{3}}\right)$ and the anti-commutator ensures that the result is symmetric in $\left(a_{1}, a_{2}, a_{3}\right)$. For G_{i} that differ, the trace is over the tensor product space, and thus factorizes into a product of the separate traces. For the case of all Abelian groups, $\operatorname{Tr} U(1)_{1} U(1)_{2} U(1)_{3}=\sum_{i} q_{1, i} q_{2, i} q_{3, i}$ where $q_{a, i}$ is the $U(1)_{a}$ charge of field i. For the case of two non-Abelian generators and one $U(1)$ generator, $\operatorname{Tr} G^{a} G^{b} U(1)=$ $\delta^{a b} \sum T_{2}\left(r_{i}\right) q_{i}$, where $T_{2}(r)$ is the quadratic index, $\operatorname{Tr}\left(T^{a}(r) T^{b}(r)\right)=T_{2}(r) \delta^{a b}$. For the case of three non-Abelian generators, $\operatorname{Tr} G^{3}$ is associated with the cubic Casimir of the group, and is proportional to the $d^{a, b, c}$ symbol, $\operatorname{Tr}\left(\left\{T_{r}^{a}, T_{r}^{b}\right\} T_{r}^{c}\right) \equiv A(r) d^{a b c}$, where $d^{a b c}$ are some completely symmetric constants that depend on the group, but not the representation r, and we can define $A(r)=1$ for a fundamental of $S U(N)$. Fact: only $S U(N)$ groups, with $N \geq 3$ have a non-zero cubic Casimir, i.e. a non-zero $d^{a b c}$. Some methods to compute $d(r)$ are $d\left(r_{1}+r_{2}\right)=d\left(r_{1}\right)+d\left(r_{2}\right)$ and $d\left(r_{1} \times r_{2}\right)=d\left(r_{1}\right) \operatorname{dim}\left(r_{2}\right)+d\left(r_{2}\right) \operatorname{dim}\left(r_{1}\right)$, and also it is enough to consider how the rep decomposes under a $S U(3) \supset S U(N)$ where $\mathbf{N} \rightarrow \mathbf{3}+(N-3)(\mathbf{1})$.
(a) Recall the $S U\left(N_{c}\right) \times\left[S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{V} \times U(1)_{A}\right]$ discussed in lecture for $S U\left(N_{c}\right)$ gauge theory with N_{f} massless Dirac Fermion flavors. Compute each of the following, remarking in particular about which are zero vs non-zero: $\operatorname{Tr} S U\left(N_{c}\right)^{3}$, $\operatorname{Tr} S U\left(N_{c}\right)^{2} S U\left(N_{f}\right)_{L}, \operatorname{Tr} S U\left(N_{c}\right)^{2} U(1)_{V}, \operatorname{Tr} S U\left(N_{c}\right)^{2} U(1)_{A}, \operatorname{Tr} S U\left(N_{c}\right) S U\left(N_{f}\right)_{L}^{2}, \operatorname{Tr} S U\left(N_{c}\right) U(1)_{Y}^{2}$, $\operatorname{Tr} S U\left(N_{f}\right)_{L}^{2} U(1)_{V}, \operatorname{Tr} S U\left(N_{f}\right)_{L}^{2} U(1)_{A}, \operatorname{Tr} U(1)_{V}^{3}, \operatorname{Tr} U(1)_{A}^{3}, \operatorname{Tr} U(1)_{V}^{2} U(1)_{A}$.
(b) Refer to the lecture on May 11 to see the $S U(3)_{C} \times S U(2)_{W} \times U(1)_{Y}$ representations of a generation of chiral, left-handed matter fields in the Standard Model. Verify that all of its anomalies involving the gauge fields vanish: $\operatorname{Tr} S U(3)_{C}^{3}=0, \operatorname{Tr} S U(3)_{C}^{2} U(1)_{Y}=0$, $\operatorname{Tr} S U(2)_{W}^{2} U(1)_{Y}=0, \operatorname{Tr} U(1)_{Y}^{3}=0$.
(c) Consider an $S U(N)$ gauge theory with one chiral Fermion in the $\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}(\mathbf{N}+\mathbf{1})$, one in the $\overline{\frac{1}{2} \mathbf{N}(\mathbf{N}-\mathbf{1})}, N_{A}$ in the adjoint, $N_{f, L}$ in the \mathbf{N} and $N_{f, R}$ in the $\overline{\mathbf{N}}$. Compute $\operatorname{Tr} S U(N)^{3}$ 。
2. Consider an $S U\left(N_{c}\right)$ gauge theory with a complex matter field Φ^{c} in the fundamental representation of $S U\left(N_{c}\right), c=1 \ldots N_{c}$, with a potential $V=-\frac{1}{2} m^{2} \sum_{c} \Phi^{c} \Phi_{c}^{\dagger}+$ $\frac{\lambda}{4}\left(\sum_{c} \Phi^{c} \Phi_{c}^{\dagger}\right)^{2}$, leading to $\left\langle\Phi_{c}\right\rangle \neq 0$.
(a) Use the symmetry to argue that you can rotate the vev to point in a particular direction, and use that to determine the unbroken gauge group. Verify that the number of would-be NGBs that are eaten agree with how many of the gauge fields got a mass m_{A}. Compute the mass m_{A}.
(b) Suppose that there are N_{f} flavors of complex matter fields, $\Phi^{c, f}$ with $f=1 \ldots N_{f}$, each in the fundamental of the $S U\left(N_{c}\right)$ gauge symmetry. What is the largest possible global flavor symmetry? Suppose that the potential preserves this largest possible symmetry, but leads to a non-zero $\left\langle\Phi^{c, f}\right\rangle$ in the vacuum. What is the configuration for $\left\langle\Phi^{c, f}\right\rangle$ that preserves the largest gauge and flavor symmetry, and what is this largest possible gauge and flavor symmetry? How many gauge fields get a non-zero mass m_{A} ? How many NGBs were left uneaten, and what is the field-space where they take values?
(c) The theory for $E>m_{A}$ is the original $S U\left(N_{c}\right)$ theory with the N_{f} matter fields $\Phi^{f, c}$. For $E<m_{A}$ we can integrate out the massive fields to get a low-energy theory consisting of the unbroken gauge fields and any uneaten matter. Refer to the lecture on May 11 to write down the one-loop running of the gauge coupling of the theory both above the scale m_{A} and below the scale m_{A}. By matching the running coupling, relate the scale Λ_{H} of the high-energy theory to the scale Λ_{L} of the low-energy theory. Should we have $m_{A}>\Lambda_{H}$ or $m_{A}<\Lambda_{H}$ for weak coupling? In that case, is $\Lambda_{L}>\Lambda_{H}$ or $\Lambda_{L}<\Lambda_{H}$?
3. Please write a one-paragraph outline of the topic that you would like to present for the final presentation. The final will be to write up a short report on the topic (around 5-7 pages), and give a 10 minute presentation during the final exam time slot.

