
215c, 3/30/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ There will sometimes be significant overlap between my lectures and David Tong’s

beautiful lecture notes on gauge theories. When I think about how I would like

to present things, the order of topics, the notation, opportunities to spice things up by

sprinkling some modern tidbits on classic fundamentals, etc – I then find that David has

already beautifully presented it, almost exactly as I would do it. Thank you, David!

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

⋆ Week 1 reading: Tong chapter 1, and start chapter 2.

• Symmetries are important, and appear in several varieties, in this topic and class.

First, there is the rotational symmetry of space, which is classically SO(3) but actually we

want its double cover, SU(2), to allow for Fermions. I will only consider relativistic QFTs

in this class (of course, non-relativistic QFTs are also interesting), so SO(3) is extended to

SO(1, 3), or the version with spinors, spin(1, 3), or SU(2)L × SU(2)R in Euclidean space.

Associated with this, we can write left and right handed chiral Fermion fields ψα and ψ̃α̇,

where α = 1, 2 is a SU(2)L fundamental index and α̇ = 1̇, 2̇ is an SU(2)R index.

• Internal symmetries can be either global or local. I discussed this in 215a, and

will review and extend the discussion here. Local symmetries are redundancies rather

than symmetries, and lead to the basic forces: electromagnetism is associated with a u(1)

gauge symmetry; the weak interactions are associated with a su(2) gauge symmetry; the

strong interactions are associated with an su(3) gauge symmetry; gravity is associated

with general coordinate invariance gauge symmetry. I will discuss these things more in

this class, but will omit gravity.

• As a reminder (from 215a) and illustration, consider L = ψ̄(i/∂ −m)ψ. There is a

global U(1) symmetry under ψ → eiqαψ. Here α is an arbitrary constant parameter, and q

is a charge that I could set to 1 here, but kept it because sometimes we have multiple fields

and their q’s then could have to be adjusted based on the interactions. The Fermion ψ is a

4-component Dirac Fermion ifm 6= 0. If m = 0, it could be one left-handed chiral Fermion,

or a right-handed chiral Fermion, or it could be the original Dirac Fermion that consists

of both. If it’s both, then U(1) becomes U(1)L×U(1)R, since we can rotate the two chiral

parts differently. If there are N Dirac Fermions of the same non-zero mass, then the global

symmetry is U(1)V × SU(N): the L is invariant under ψi → U i
jψ

j where i = 1 . . .N is a

flavor index and U is a constant, unitary, N ×N matrix. Recall SU(N) is the symmetry

group if we restrict to U with detU = 1. If there are N massless Dirac Fermions, then the
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global symmetry is U(1)V × U(1)A × SU(N)L × SU(N)R, where U(1)V is the part that

acts on Dirac Fermions, and U(1)A acts with γ5, e.g. the associated current is ∼ ψ̄γ5γµψ.

Later on, we will discuss variants with gauge fields, and we will see there that the classical

U(1)A global symmetry is violated by a quantum effect; this is called the ABJ anomaly.

• Briefly review group theory for continuous Lie groups G. We take G to be compact

(e.g. SU(2) rather than SL(2) or SU(1, 1)). Consider g ∈ G = exp(i
∑|G|

a=1 φaT
a) and the

group multiplication rule becomes commutation relations for the generators: [T a, T b] =

ifabcT c. For the case of SU(2), a = 1, 2, 3 and fabc = ǫabc. We know this group well from

the rotation group and angular momentum: T a = Ja/h̄. Symmetries show up in that our

objects (states or operators) form representations. For U(1), the representation is labeled

by the charge qe. For SU(2), it is labelled by the analog of the spin j in the rotation group:

j ∈ 1
2
Z labels a (2j+1) dimensional representation, where T a=3 is diagonal and runs from

j
2
, j
2
− 1, . . .− j

2
. The fundamental, 2 dimensional representation of SU(2) has T a = 1

2
σa,

with σa the Pauli matrices. For SU(N), the fundamental representation is that g are

unitaryN×N matrices with det g = 1, and thus T a are Hermitian tracelessN×N matrices,

and thus |SU(N)| = N2 − 1. Every group also has the adjoint representation, which is

|G| dimensional, with (T a)bc → −ifabc, i.e. T a|T b〉 = −ifabc|T c〉 = [[T b, T a]〉; it follows

from the Jacobi identity for triple commutators that this satisfies [T a, T b] = ifabcT c. For

SU(2), the adjoint is j = 1, so e.g. T 3 = diag(1, 0,−1) in the m = 1, 0,−1 basis.

For any G, the generators in representation r have Tr(T a
r , T

b
r ) = T2(r)δ

ab, where

T2(r) is called the quadratic index of the representation. Also
∑G

a=1 T
a
r T

a
r = C2(r)1|r|×|r|,

where C2(r) is the quadratic Casimir of the representation. Comparing gives C2(r) =

|G|T2(r)/|r|. It is common to normalize the T a as in SU(2), so T2(fund) =
1
2
. It is also a

common notation to instead normalize the T a such that T2(fund) = 1, so if you need to

track down factors of 2 in some reference, double check their T a normalization conventions.

• The conserved charges in a theory with symmetry group G, either global or local,

are in the adjoint representation of G. For U(1), the adjoint is charge neutral; this is the

statement that the charge Q operator measures charge, but does not carry its own charge

since [Q,Q] = 0. The charges for general G, in a local theory, are Qa =
∫
d3xJa,0 where

a is the adjoint index and 0 is a Lorentz index, where ∂µJ
a,µ = 0.

Global currents Ja,µ can be coupled to background gauge fields Aa
µ(x), which are also

in the adjoint of G, via L ⊃ −TrAµJ
µ +O(A2). The backgrounds are an example of the

sources that we introduce for every operator, to be able to compute correlation functions

by taking functional derivatives of the effective action. For local, gauge symmetries the
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Aa
µ(x) are dynamical (vs background) fields that we quantize, via canonical quantization

or by functionally integrating over them in the path integral. For global symmetries, on

the other hand, they are optional sources that we can imagine controlling with a some

dial on a machine, like subjecting a system in the lab to an electric or magnetic field

that the experimenter can control. We will see that non-zero Aa
µ(x) backgrounds require

covariant derivatives ∂µ → Dµ involving the gauge field Aa
µ(x). This is similar to the

∇µ covariant derivatives of GR, but with the connection Γµ
ρσ replaced with −iAaT a. In

particular, current conservation equation becomes DµJµ where Jµ is in the adjoint and

there are some commutator terms ∼ fa
bc hidden in the Dµ – details will be given soon–

and associated with that there are some higher order in Aa(x) terms needed in the action.

Non-abelian theories are non-linear.

We can likewise consider modifying the spacetime metric to some background metric

ds2 = gµνdx
µdxν . We know from GR that the metric is really dynamical, and presumably

should be quantized. For low energies and small spacetime curvatures we can treat the

metric as approximately fixed, rather than dynamically fluctuating, and usually we take

gµν → ηµν . But we could also imagine somehow changing the metric to gµν , which acts as

a source for the energy momentum tensor Tµν : δ√
|g|δgµν

→ 1
2
Tµν , with ∇µT

µν = 0.

• We now consider local, gauge symmetry, e.g. ψi → U i
j(x)ψ

j. The Aa
µ gauge fields

are then required, dynamical fields, which we need to quantize, rather than optional back-

ground sources. For example, the strong nuclear force is associated with a dynamical,

su(3) gauge theory, and there are 8 associated gluon force carriers Aa,µ, a = 1 . . . |su(3)|
with |su(3)| = 8. They are similar to the photon – massless, with two polarizations – in

the perturbative analysis that is appropriate for UV processes. But unlike the photon the

gluons have non-linear self-interactions, which leads to confinement in the IR. There is an

unclaimed $106 Clay prize for satisfactorily showing how this happens (there are many

known ways to see it that are insufficient to claim the prize, including doing the functional

integral by making spacetime a lattice and having a computer do the sum).

• Recall gauge theory for the case of QED. We take the Dirac Fermion ψ above and

modify its U(1) global symmetry to make it a local u(1) “symmetry”: ψ → e−iqα(x)ψ. The

derivatives have to be replaced with covariant derivatives, such that Dµψ → e−iqα(x)Dµψ,

and then Dµψ = (∂µ + iqAµ)ψ and Aµ → Aµ + ∂µα. No physics can depend on the choice

of α so this is not just a symmetry, but really a redundancy of our description; it looks
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almost like a figment of our imagination, but it is needed for locality and has physical

manifestations. Anyway,

L = − 1

4e2
FµνF

µν + ψ̄(i /D −m)ψ, Dµψ = ∂µ + iqAµ.

Sign check: L ⊃ −AµJ
µ in our mostly minus convention, and here Jµ = qψ̄γµψ. Gauge

configurations differing by a gauge transformations are equivalent, and in the functional

integral we only integrate over physically distinct, inequivalent configurations (integrating

over the gauge orbit gives an infinite factor):

Z[sources] =

∫
[dψ][dAµ/gauge]eiS/h̄.

• There is another Lorentz and gauge invariant term that we can add to the QED

Lagrangian density, ∼ ǫµνρσFµνFρσ ∼ ~E · ~B. Note that this term violates P (since ~E is

a vector and ~B is an axial pseudovector) and T (since ~E is even and ~B is odd). Also

note that, unlike FµνF
µν , we do not need to use the metric to contract the indices of

∼ ǫµνρσFµνFρσ; indeed, this term is a topological quantity (it doesn’t care if the metric of

spacetime is flat, that of a black hole, FRW, etc).
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