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⋆ Week 5 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Last time, started to discuss the gauge field propagator. As in QED, we can see it

from the path integral perspective by considering the Aa
µA

b
ν terms in L and the Gaussian

integral leads to the inverse of the differential operator that acts on them. As in QED,

gauge invariance means that the differential operator has zero modes from pure gauge

configurations, so need care in inverting it. A procedure is to fix a gauge and then one can

check that the results in the end are gauge invariant.

Naively doing the same procedure in non-Abelian gauge theories does not work. This

is related to the fact that the gauge fields are charged, in the adjoint representation, and

the currents are covariantly conserved. The upshot is that we have to add some new

fictitious fields, called ghosts, to subtract off the unphysical polarizations in loops and

make things work. Feynman and Bryce DeWitt (independently) first noticed this in the

context of writing down a quantum theory for gravitons in the early ’60s. They realized

that Yang-Mills theory was a good toy model, exhibiting similar non-linearities as gravity,

and they initially just worked out what the ghosts had to be in order to get sensible, gauge

invariant physics at the end. This was later systematized by Fadeev and Popov.

Picture gauge field space, and the physically equivalent gauge orbits. The path integral

should integrate over physically distinct configurations, i.e. it should only count one gauge

field in each orbit. The gauge fixing condition should fix to a slice in this space that

intersects each orbit once. If we instead integrate over the gauge equivalent orbits, we

get an extra factor of the volume of the gauge group and then we can divide by that

overall multiplicative factor (it’s just overall multiplicative by gauge invariance). Let’s

first consider the case of QED, where the gauge orbit is Aµ → Aµ + ∂µω for any ω. We

can gauge fix by imposing some F (A) = 0 which slices through each gauge orbit once,

e.g. taking F (A) = ∂µA
µ. Alternatively, we can impose F (A) = f(x) and then introduce∫

[df ]G[f ] into the path integral, which is just a normalization factor. We like to take

G[f ] = exp(− i
2ξ

∫
f2) and then, when we gauge fix to f = ∂µA

µ, we get the photon

propagator i(−gµν + (1 − ξ) p
µpν

p2 )/(p2 + iǫ) and the results are independent of ξ at the

end of the day (ξ = 1 is Feynman gauge and ξ = 0 is Landau gauge. The non-gauge fixed

theory is like ξ → ∞, which looks singular.)
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We will repeat the analog of this for non-Abelian gauge theory, but the argument

was a little sloppy - in a way that does not matter for abelian theories but introduces

ghosts for non-Abelian theories. The sloppy point was, when we impose F (A) = f , we

should think about this as introducing a δ[F (A)− f ] and we need the functional analog of

δ(f(x)) = 1
|f ′(x)|

δ(x− x0). We should insert 1 =
∫
dωa(x)δ(F (Aω)− f) det( δF (Aω)

δω
) where

U(x) = exp(iT aωa(x)) ∈ G are the gauge transformation group elements, and dωa(x) is

some group invariant integration measure in the Lie algebra (called the Haar measure).

Group invariant means that we can do a change of variables U(x) → gU(x) where g is any

group element and we get the same thing (e.g. if we’re integrating over the Euler angles

we can shift the origin). We then get

∫
dωa

∫
[dAa

µ]

∫
dfδ[F (A)− f ] det(

δF (Aω)

δω
)eiS+ i

2ξ

∫
f2

The delta function was introduced for getting the gauge slice from [dA] but we can

instead use it to do
∫
[df ]. The

∫
dωa factors out as an overall normalization con-

stant. Introducing sources for Aa
µ and doing that path integral gives the propagator

iδab(−gµν + (1− ξ) p
µpν

p2 )/(p2 + iǫ)

The determinant is the Fadeev Popov determinant, and it will be obtained via a gaus-

sian integral of fictitious scalar fields. Because the determinant does not have a square-root,

these are scalar fields, and they are in the adjoint of the group. Because the determinant

is in the numerator, the scalar fields are grassmann, anticommuting – so they contribute

with a minus sign in loops. That minus sign, and the fact that it is two real fields in the

adjoint, are related to the fact that they’re subtracting off two unphysical polarizations of

the gauge field.

• The cubic and quartic Aµ terms in LYM lead to cubic and quartic Feynman

diagrams. The diagram with gauge fields with labels (a, µ, k), (b, ν, p), (c, ρ, q) con-

tributes gfabc[gµν(k − p)ρ + gνρ(p − q)µ + gρµ(q − k)ν ]. The quartic vertex contributes

−ig2[fabef cde(gµρgνσ − gµσgνρ) + 2perms]. Let’s illustrate by starting to compute the

one-loop correction to the gluon propagator from the diagram using two cubic vertices.

Let the external gluons have labels (a, µ, q) and (b, ν,−q) and the internal gluons have

(c, ρ, p) and (d, σ, q + p). Get (the 1
2
is a symmetry factor)

1
2g

2facdf bcd

∫
d4p

(2π)4
−i

p2
−i

(p+ q)2
[gµρ(q − p)σ + 2terms][δνρ (p− q)σ + 2terms].
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Recall that
∑|G|

a=1 T
a(r)T a(r) = C(r)1|r|×|r|, with C(r) the quadratic Casimir of the rep-

resentation, and for the adjoint representation T a → −ifabc and this gives
∑

ab f
abcfabd =

C(adj)δcd. For SU(2) using fabc = ǫabc gives C(adj) = 2 (= j(j + 1) with j = 1). More

generally, C(adj, SU(N)) = N .

We can combine the denominators using the Feynman trick, giving
∫ 1

0
dx 1

(x(p+q)2+(1−x)p2)2
,

and we go to Euclidean d dimensions and do the
∫
ddp integrals using the standard in-

tegral formulae e.g.
∫

ddpE

(2π)d
1

(p2

E
+∆)n

= 1
(4π)d/2

Γ(n−
1
2d)

Γ(n) ∆
1
2d−n.. The result is a mess and

does not have the correct Lorentz structure. Adding the loop with the quartic vertex

does not help. This problem is solved by adding the ghosts. Adding the ghost loop

gives a reasonable transverse result. It turns out to be that the three diagrams sum to

i(q2gµν − qµqν)δabC2(adj)
g2

(4π)2 [(
13
6 − ξ

2 )Γ(2−
1
2d) + . . .]. There are also tadpole type di-

agrams, with a gauge field tail connecting to a blob head – such diagrams must give zero

because they can be interpreted as a one-point function correlator of the gauge field cur-

rent, which must vanish both by Lorentz invariance (as in QED), and also gauge invariance.

The ξ will cancel in the end for physical processes.

• Let’s also consider the leading, tree-level contribution with external sources in rep-

resentations r of G. For the case of QED, we replace r with the charge q and the in-

teraction vertex the coupling of Aµj
µ gives a factor of ieq (recall the Aµ sign change).

We saw in the Fall that the t-channel photon exchange Feynman diagram gives the

Coulomb potential, here weighted by e2q2. The only difference in the non-Abelian case

is we replace ieq → igT a(r). For the case of the adjoint representation, recall that

T a → −ifabc and this is consistent with how the gluon couples in the 3-gluon vertex.

We recover the same Coulomb potential from the leading-order, tree-level diagram, with

e2q2 → g2
∑

a(T
a(r)T a(r)), i.e. the Coulomb potential is weighted by g2C(r). Aside:

Trr(T
aT b) = T2(r)δ

ab and comparing gives C(r) = |G|T2(r)/|r|. The Casimir of the fun-

damental of SU(Nc) is C(fund) = (N2
c − 1)/2Nc (e.g. for Nc = 2 this is j(j + 1) with

j = 1
2) while that of the adjoint is C(adj) = T2(adj) = Nc.

Another way to understand the need for ghosts in non-Abelian gauge theories (see

e.g. Peskin and Schroeder section 16.1) is to consider the one-loop correction to this tree-

level process. In QED, the intermediate photon propagator is replaced with its one-loop

correction, with a fermion loop. The optical theorem relates the imaginary part of this

loop diagram to the square of the tree-level diagram where we cut across the loop. In

Yang-Mills, we have similar diagrams where we replace the fermion loop with a gluon

loop, and we can think of the tree-level process as r × r̄ → γ → γγ where γ now refers
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to the gauge field (aka gluon). The puzzle is that all four gluon polarizations run in the

virtual gluon loop, whereas the external gluons should be on-shell and thus only have two

polarizations. The fix will be to add ghosts that also run in the loop, and properly subtract

off the unphysical polarization contributions.

• We now put in the FP determinant via Sghost term for adjoint valued, anti-

commuting scalar ghost fields ca. (There is a remaining symmetry, found by BRST

(Becchi, Rouet, Stora, and independently Tyutin), such that physical states = the co-

homology of an operator QBRST , which can be used to prove that the physical states are

unitarily ghost-free.) The ξ gauge fixing is associated with F (A) = (∂µA
µ)a (yes, they’re

ordinary rather than covariant derivatives). An infinitesimal gauge transformation gives

δF a = ∂µ(fabcδωbAc
µ(x)− ∂µδω

a(x)) so δFa(x)
δωb(y)

= ∂µ([δab∂µ − fabcAc
µ]δ(x− y)) and

∆FP = (const) det(∂µDµ) = (const)

∫
dcadc̄aeiSghost , Sghost =

∫
d4xTr(∂µc̄D

µc).

The ghost propagator is iδab

p2+iǫ (and loops have a minus sign since it’s anticommuting),

and there is a ghost vertex with the gauge field, weighted by gfabcpµ (where the incoming

ghost has index a, the gauge field has index c and µ, and the outgoing ghost has index b

and momentum pµ). So the ghost loop contribution to the gluon propagator is

(−1)g2facdf bdc

∫
d4p

(2π)4
i

p2
i

(p+ q)2
(p+ q)µpν

→ ig2(4π)d/2C2(adj)δ
ab

∫ 1

0

dx∆d/2−2(−1
2
Γ(1− d/2)gµνq2 + Γ(2− d/2)qµqν)x(1− x),

which adds to the other diagrams to cancel an unwanted pole at d = 2 and give the correct

transverse Lorentz structure.
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