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⋆ Week 5 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Last time: we need to gauge fix to write down a sensible gauge field propagator.

Get δ[F (A) − f ] det δF (Aω)
δω e−
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2ξ

∫

d4xf2

which leads to Lg.f. = − 1
2ξF

aF a and Lghost =

−c̄a ∂Fa

∂Ab
µ
(Dµc)

b. For F = ∂µA
µ gives Lg.f. = − 1

2ξ
(∂µAa

µ)
2 and Lghosts = ∂µc̄a(Dµc)

a

with (Dµc)
a = (δab∂µ − gfabcAc

µ)c
b. The gauge field propagator is then iδab(−gµν + (1−

ξ) p
µpν

p2 )/(p2+ iǫ), the ghost propagator is iδab

p2+iǫ , and there is a ghost vertex with the gauge

field, weighted by gfabcpµ (where the incoming ghost has index a, the gauge field has

index c and µ, and the outgoing ghost has index b and momentum pµ). As mentioned

last time, the gauge field propagator gets corrected by two diagrams with internal gauge

fields, and each diagram, and the sum, does not have the required behavior: it should be

transverse, i.e. ∼ (q2gµν −qµqν)Π(q2), and we expect from experience that Π(q2) will have

to be regulated and that in dim-reg will give a Γ(2− d/2). Instead the two diagrams are

non-transverse, and have additional Γ(1−d/2) terms. The ghost loop fixes these problems.

The ghost loop contribution to the gluon propagator is

(−1)g2facdf bdc

∫

d4p

(2π)4
i

p2
i

(p+ q)2
(p+ q)µpν

→ ig2(4π)d/2C2(adj)δ
ab

∫ 1

0

dx∆d/2−2(−1
2Γ(1− d/2)gµνq2 + Γ(2− d/2)qµqν)x(1− x),

with ∆ = −x(1 − x)q2. This adds to the other diagrams to cancel an unwanted pole at

d = 2 and give the correct transverse Lorentz structure.

• Unitarity, e.g. if there is an S-matrix then Sfi = δfi+ i(2π)
4δ(pi−pf )Tfi is unitary,

and then Tfi−T ∗

if = i
∑

n T
∗

nfTni(2π)
4δ(pi−pn) where the sum is over physical states. So

the issue, discussed last time, is that if we cut an internal gauge field propagator and replace

it by its imaginary part, corresponding to the LHS, then we want to get only physical

states – but we do not. For example, the imaginary part of the gauge field propagator

in Feynman gauge (ξ = 1) is −2πδabgµνδ(k
2)Θ(k0), which looks good for external gauge

fields except that δab includes all polarizations. The way out in QED is that the photon

couples to a conserved current, so if we replace ǫµ → kµ for an external photon we get

zero anyway kµAµν = 0. This does not generalize to the non-Abelian case and instead we

add the additional ghost-loop diagram to the gauge field propagator, which cancels off the

longitudinal polarization contributions.
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There is a nice way to prove that the ghosts do the right thing and that the resulting

theory is unitary. It uses what is known as BRST quantization, (Becchi, Rouet, Stora,

and independently Tyutin). It introduces a Fermionic BRST symmetry Q, which acts

on the physical fields like a gauge transformation with gauge parameter ωa → ca, e.g.

i[Q,Aa
µ] = (Dµc)

a. It acts on the ghost ca as i{Q, ca} = −gfabccbcc, and i{Q, c̄a} = ba

where ba enters by replacing Sg.f with Lb = ba∂µA
µa+ 1

2ξb
aba (this last step is a standard

trick, sometimes called the Hubbard-Stratonovich transformation and sometimes called a

Legendre transformation). Finally Qba = 0. It can be shown that Q2 = 0. There is a

similar Q̄ symmetry that acts on the physical fields like a gauge transformation where the

gauge parameter is c̄a and a more complicated action on ba and ca, and which satisfies

{Q, Q̄} = Q̄2 = 0. The gauge fixing and ghost terms can be obtained by writing down the

most general theory consistent with the Q and Q̄ symmetry with ghost number zero. The

FP procedure does not work properly when the gauge fixing condition F a = 0 is not linear

in the gauge field, but the BRST procedure always works.

The physical states are in the cohomology of Q and Q̄. It’s a long story, which could

be a topic for the final presenation.

• We can also consider a Fermion in representation rf , with L ⊃ ψ̄i /Dψ which leads to

a cubic vertex with one gauge field and two Fermions, weighted by igγµT a
rf
. We could also

consider a scalar in representation rs, which yields a 3-point vertex with weight igT a(pµ+

qµ) where p and q are the incoming momenta of the scalars. There is also the quartic

seagull vertex ig2gµν{T a, T b}.
• Let’s write the Lagrangian as having terms

L ⊃ −1

4
Z3[∂µA

a
ν−∂νAa

µ+g
Z1,YM

Z3
fabcAb

µA
c
ν ]

2+Z̃2c̄
a[δab∂2−g̃(Z̃1/Z̃2)f

abcAc
µ∂

µ]cb− 1

2ξ
(∂µA

µa)2

where we will want our renormalization scheme such that g = g̃ and gZ1,YM/Z3 = g̃Z̃1/Z̃2,

with analogous relations if we add matter fields, so that the gauge field couples universally

with the same gauge coupling g. The bare quantities are Aa
B,µ =

√
Z3A

a
µ, c

a
B =

√

Z̃2c
a,

gB = gZ1,YM/Z
3/2
3 = g̃Z̃1/Z̃2Z

1/2
3 . We can re-write it in terms of the original Lagrangian

for the physical fields, and counter-terms

Lc.t. = −1

4
δ3[∂µA

a
ν − ∂νA

a
µ]

2 − 1

2
δA3g(∂µA

a
ν − ∂νA

a
µ)f

abcAb,µAc,ν−

1

4
g2δA4fabcfaefAb

µA
c
νA

e,µAf,ν + δ̃2c̄
a∂2ca − δ̃1f

abcc̄aAb
µ∂µc

c . . .
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where δ ≡ Z − 1, δA3 = Z1,YM − 1, and δA4 = (Z2
1,YMZ

−1
3 − 1) etc . Z3 gets contributions

from loop (gauge field + ghosts+matter) corrections to the 2-gauge field propagator, Z1,Y M

gets contributions from the loop corrections to the 3-gauge field vertex, Z1,YMZ
−1
3 gets

contributions from the loop corrections to the four-gauge field vertex. For example, in

d = 4 − ǫ dimensions, the three one-loop contributions to the gauge field propagator (in

pure Yang-Mills – there is an additional contribution from matter fields running in the loop)

leads to δ3 = 1
ǫ

g2

16π2 (
10
3 + 1− ξ)C(adj) + . . ., and δA3 = 1

ǫ
g2

16π2 (
4
3 + 3

2(1 − ξ))C(adj) + . . .

and δA4 = 1
ǫ

g2

16π2 (−2
3 + 2(1− ξ))C(adj) + . . . Of course, the gauge parameter ξ must drop

out at the end for physical quantities.

We now write gB = gµǫ/2Z1,Y M/Z
3/2
3 = gµǫ/2(1 + δA3 − 3

3δ3) +O(g4) (or any of the

other relations, expressing universality of the gauge coupling), and require that the bare

quantities are µ independent. This gives β(g) = dg
d lnµ = −1

2 ǫg − d
d lnµ (δA3 − 3

2δ3) + . . .

with δA3 − 3
2
δ3 = 1

ǫ
g2

16π2C(adj)(−11
3
) + . . .. It’s a cross check that ξ indeed dropped

out. We use the fact that each δ only depends on µ via the renormalized g to replace

− d
d lnµ → − d ln g

d lnµ
d

d ln g → ǫ
2

d
d ln g . The upshot for ǫ → 0 is β(g) = − g3

48π2 (11C(adj) −
4T (rDF ) − T (rCS)) + O(g5) where the last expression includes the effect of Fermions in

representation rDF and scalars in representation rCS . Here DF stands for Dirac Fermion

and we should divide the contribution to the beta function in half if the Fermions are

chiral; likewise CS stands for complex scalars and we should divide the contribution in

half if the scalars are real.

• There is an alternative method to the direct assault on the gauge field propagator

and other contributions, which is cleaner, requires fewer diagrams, and is conceptually

interesting. It is called background field gauge. It is like having your cake and eating it

too. On the one hand, we need to break gauge invariance, fixing a gauge, to write the

gauge field propagator. Then we have to wait until the dust settles in the calculation

to see that the final result is gauge invariant, e.g. the cancellation of the ξ parameter

mentioned above. Background field gauge is a way to break gauge invariance, but still have

manifest background gauge invariance in the calculation. Global currents can be coupled

to background gauge fields sources. For a gauge symmetry, there are instead dynamical

gauge fields that we integrate over in the path integral. But we can still couple a global

component of the gauge symmetry to a background source. There are then two types

of gauge transformation: that of the dynamical gauge field, and that of the background

source. We can choose gauge fixing such that they violate gauge invariance but preserve

the sum of gauge plus background gauge invariance.

3


