
215c, 5/6/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 6 reading: Tong chapter 2.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Last time: sketched how to get the beta function from gB = gµǫ/2ZA3/Z
3/2
A2 where

L ⊃ −1
2Tr(ZA2(∂µAν −∂νAµ)

2− igZA3(∂µAν −∂νAµ)[Aµ, Aν]+ . . .), and Aµ
B =

√
ZA2Aµ.

Manifest gauge invariance would require L ⊃ −1
2ZTrFµνF

µν with Fµν = i[Dµ, Dν ] and

Dµ = ∂µ − igAµ, i.e. ZA2 = ZA3 ≡ Z, but the gauge fixing of course breaks manifest

gauge invariance (which gives an opportunity for a cross-check, to see that it is recovered

at the end of the calculation when the dust settles). In particular, we gauge fixed with

gauge fixing condition F a = ∂µA
µ, which led to Lghost = ∂µc̄

aDµc
a which is obviously not

gauge invariant because of the ordinary derivative. The ghosts have the cubic vertex with

a gauge field, weighted by fabc, as expected for a field in the adjoint; but they do not have

the usual seagull quartic vertex of a scalar. There are three one-loop diagrams in pure

YM that contribute to the gauge field propagator, giving ZA2 − 1 = δA2 . If we include

charged matter, there are additional diagrams with the scalars or Fermions running in the

loop. There are three IPI one-loop diagrams contributing to the 3-gauge field coupling

and hence ZA3 − 1 = δA3 (one loop of gauge field with 3 cubic vertices, one with one

cubic and one quartic vertex, and one ghost loop). Again, there are additional diagrams

from charged Fermions or scalars in the loop. Summing all these contributions leads to

β(g) = − g3

48π2 (11C(adj)− 4T (rDF ) − T (rCS)) +O(g5) where the last expression includes

the effect of Fermions in representation rDF and scalars in representation rCS . Here DF

stands for Dirac Fermion and we should divide the contribution to the beta function in half

if the Fermions are chiral; likewise CS stands for complex scalars and we should divide

the contribution in half if the scalars are real. Again, the remarkable point is that the

coefficient can be negative, which cannot happen in 4d for any theory other than non-

Abelian gauge theories. If there is not too much matter, β < 0, leading to asymptotic

freedom in the UV and strong coupling in the IR.

• There is a different gauge choice that requires fewer diagrams, and is conceptually

interesting. It is called background field gauge. It is like having your cake and eating it

too. On the one hand, we need to break gauge invariance, fixing a gauge, to write the

gauge field propagator. Then we have to wait until the dust settles in the calculation

to see that the final result is gauge invariant, e.g. the cancellation of the ξ parameter

mentioned above. Background field gauge is a way to break gauge invariance, but still

1



have manifest background gauge invariance in the calculation. Global currents can be

coupled to background gauge fields sources. For a gauge symmetry, there are instead

dynamical gauge fields that we integrate over in the path integral. But we can still couple

a global component of the gauge symmetry to a background source. We mentioned an

example of this earlier, with Schwinger’s calculation of charged particle production in an

external electric field. As was the case there, we include vertices where the dynamical fields

couple to the external source. There are then two types of gauge transformation: that of

the dynamical gauge field, and that of the background source. We can choose gauge fixing

such that they violate gauge invariance but preserve the sum of gauge plus background

gauge invariance.

We can phrase it as above with the gauge fixing condition F (A), where we had Lg.f. =

− 1
2ξ
F aF a and Lghost = c̄a ∂Fa

∂Ab
µ
(Dµc)

b. Introduce a classical background Āa
µ and corre-

sponding D̄µ = ∂µ−igĀµ. Then we take F a = (D̄µ(A−Ā)µ)
a and Lghost = −D̄µ c̄Dµc. We

now take the gauge transformations δG to act on Aµ and the fields as usual, but take Āµ to

be invariant. There are also background gauge transformations δBG, which only act on Āµ

and leave Aµ and all the fields invariant. The gauge fixing terms of course break δG (that’s

their job) and they also break δBG. But everything preserves the combination δG+BG. For

example, δGAµ = DµωG and δGĀµ = 0 and δBGAµ = 0 and δBGĀµ = D̄µωBG. Then

taking ωG = ωBG get δG+BG(A − Ā)µ = (Dµ − D̄µ)ω = −ig(A − Ā)µω = igω(A − Ā)µ

(the last step can be seen by writing out ω = ωaT a and A − Ā = (A − Ā)bT b and

(T b
adj)

ac = −if bac = ifabc = −(T a
adj)

bc). So (A − Ā)µ transforms in the adjoint, so F a

transforms in the adjoint. Everything ends up being invariant under δG+BG.

Upon doing the functional integral over the dynamical gauge fields, the effective action,

as a function of the background fields, must then be invariant under background gauge

symmetry (otherwise we would say that the symmetry is anomalous - i.e. violated by

quantum effects – and we will see that this happens for some global symmetry, but gauge

symmetries cannot be anomalous). The background gauge symmetry then ensures that

ZA2 = ZA3 = ZA4 ≡ Z; this is the huge simplification. So g2B = Z−1g2µǫ and it’s

now possible to compute the beta function simply from the gauge field 2-point function

diagrams that contribute to ZA2 . Let’s write Aµ − Āµ ≡ δAµ (where δAµ can be thought

of as the quantum fluctuations). Āµ can be roughly thought of as an IR part, and δAµ

are the UV fluctuations. We will do the functional integral over the δAµ, and get an

effective action for the Āµ. In terms of the diagrams, the internal gauge field propagators

are δAµ, and the external ones are Āµ. We take δGĀµ = 0 and δG(δAµ) = δGAµ =

2



Dµω = (∂µ − igAµ)ω = D̄µω − igωAµ. The gauge fixing condition is F = D̄µδAµ, so

Sg.f. =
1
2ξ

∫

d4x(D̄µδAµ)
2 and the FP determinant gives

∫

dcdc̄ exp(−Sghost) with Sghost =
∫

d4xTr[D̄µc̄D̄
µc+ igc†[D̄µδAµ, c]. Note that the ghost has the same propagator as before,

and it has a cubic vertex that is similar to the one before, but now it is coupling to

the external background field Āa
µ. There is a similar cubic vertex where it couples to

the dynamical gauge field. Finally, there two seagull-like vertices, coupling incoming and

outgoing ghosts to two gauge fields: the first term contributes such a term involving two

background gauge fields, and the second term contributes involving one background and

one dynamical gauge field.

We can obtain Z = ZA2 , and thus the beta function, from the diagrams where we

couple to two external gauge fields Āa
µ and Āb

ν . At one loop, in pure YM, we have 4

diagrams: the 3 from before, plus one with a ghost loop and one seagull vertex to the

background gauge fields. There are some nice cancellations between the gauge fixing term

and the terms in LYM for ξ = 1, but the result is of course ξ independent in any case. An

equivalent way to think about the calculation, discussed in detail in Tong’s lecture notes is

seen from the functional integral as follows (going back to the normalization of the gauge

fields where g only appears in front of the gauge kinetic terms)

e−Seff [Ā] =

∫

[DδA][Dc][Dc̄]e−S[Ā,δA,c,c̄] =
det∆ghost

√

det∆gauge

e
− 1

2g2

∫

d4xTrF̄µνF̄µν

∆µν
gauge = −D̄2δµν + 2i[F̄µν ·], ∆ghost = −D̄2. So

Seff [Ā] =
1

2g2

∫

d4xTrF̄µν F̄µν + 1
2Tr ln∆gauge − Tr ln∆ghost.

See the Tong notes for a nice, detailed calculation of these quantities, and how they lead

to Seff ⊃ 1
2g2(µ)

∫

d4xTrF̄µν F̄µν with g−2(µ) = g−2 − 11
3

C(adj)
16π2 ln(Λ

2

µ2 ).

• Let’s go back to the intuitive picture of the beta function being associated with

the vacuum screening or anti-screening charges. There is a way to reproduce the one-

loop beta function from a direct calculation along these lines. I will briefly sketch it, and

you can find more details in Preskill’s online lecture notes (linked in the class’ webpage).

Write the one-loop beta function as giving g2(µ) = g20/(1− g20
b1

16π2 ln(Λ
2/µ2)), which can

be interpreted as ǫ−1
dielectric = µpermeability = (1 − g20

b1
16π2 ln(Λ

2/µ2)), so the susceptibility

is χ = (µpermeability − 1)/µpermeability ≈ − b1
16π2 g

2
0 ln(Λ

2/µ2). The idea is to turn on an

external magnetic field and read off χ from dU = −MdB = −χBdB i.e. U = −1
2
χB2.

For a non-Abelian theory, we can restrict to a U(1) subgroup and then reassemble at the
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end. Turning on the external B field leads to Landau levels for the charged matter fields,

e.g. a spin 0, charged massless particle has E2 = (~p − e ~A)2 = p2z + (2n + 1)eB upon

quantizing the rotation in the (x, y) plane. Adding these contributions and regulating

the dpz integral leads to χdiamagnetic = − 1
48π2 e

2 ln Λ2, where Λ is a UV cutofff in the

momentum integral. For Fermions it is the E < 0 rather than the E > 0 levels that

are occupied, so they contribute to χdiagmagnetic with opposite sign, i.e. there is a factor

of (−1)F , giving the usual loop-weighting factor. To see the possibility of paramagnetic

contributions, we need to include the energy contribution from the particle’s magnetic

moment, i.e. E2 = (~p − e ~A)2 − gratioe ~B · Sz, giving (setting gratio = 2 and replacing

e → Qe for a particle of charge Q). The result for a complex field is χ = 1
16π2 (−1)F (−1

3 +

4S2
z )e

2 lnΛ2. So b1 = Q2(−1)F (4S2
z − 1

3 ). We now sum over all the charged matter

fields Qi, and we can reassemble back into the non-Abelian group factors by replacing
∑

i Q
2
i → Trr(T

u(1)Tu(1)) = T2(r) (e.g. for SU(Nc) we can pick T to be any generator,

e.g. T3 for any SU(2) subgroup, to get T2(fund) = ( 12 )
2+( 12 )

2 = 1
2 and T2(adj) = C(adj) =

(1)2+(1)2+2(Nc−2)T2(fund) = Nc) and use Sz = 0 for scalars, Sz = ±1
2 for Fermions, and

Sz = ±1 for spin 1 (i.e. the gauge fields – for the case of the gauge fields, there is an extra

factor of 1
2
because they are real). This reproduces b1 = 1

3
(11C(adj)−4T (rDF )−T (rCS)).

Asymptotic freedom is a consequence of the large magnetic moments of the spin 1 charged

matter from the non-Abelian gauge fields.

ended here

• Write the one-loop beta function as d
d lnµ (−8π2g−2) = 16π3g−3β(g) ≡ −b1, which

integrates to e−8π2/g2(µ) = (Λ
µ
)b1 , with b1 = 1

3
(11C(adj)−4T (rDF )−T (rCS)). For example,

for SU(Nc) gauge field with Nf Dirac flavors in the fundamental this gives b1 = 1
3
(11Nc−

2Nf ). The theory is asymptotically free if Nf < 11
2 Nc. Aside: with supersymmetry we add

new fields: gauginos which are adjoint chiral Fermions (2-component, to match the two

polarizations of the gauge fields) and complex scalars in the Nc + N̄c to match the d.o.f.

of the Fermion flavors, so b1 = 1
3
(11Nc − 2Nf − 2Nc −Nf ) = 3Nc −Nf , so the theory is

asymptotically free if Nf < 3Nc. If we go to two loops, then d
d lnµ

(−8π2g−2) ≡ −b1+b2g
2,

and it turns out that the 2-loop beta function coefficient b2 is positive. There is then a

possibility of having β(g∗) = 0, at g2∗ = b1/b2. Draw the picture. If the theory is just

barely asymptotically free, then b1 can be small and b2 large, so that this fixed point can

be weakly coupled, and then we can trust the perturbative calculations. Lattice gauge

theory gives a way to determine the conformal window outside of perturbation theory, and

this has been part of Prof. Julius Kuti’s research program.
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• If we plot the one-loop 2π/α = 8π2/g2 as a function of lnµ, the one-loop running

gives a straight line, with slope b1; asymptotically free couplings have b1 > 0 and non-

asymptotically free ones have b1 < 0. Let’s consider the effect of a field of mass m.

For energies µ > m, the massive field contributes in the loop and there is some beta

function βH(g). For energies µ < m, the massive field decouples (this is not obvious

in mass independent renormalization schemes, e.g. MS), and the low-energy theory has

beta function βL(g). The coupling g is of course continuous across the scale m, and

this gives a threshold matching relation for the dynamical scale. To one-loop, this gives

(ΛH

m )b1,H = (ΛL

m )b1,L , i.e. Λ
b1,L
L = mb1,L−b1,HΛ

b1,H
H , e.g. for SU(Nc) with Nf matter

fields in the fundamental, if we give a mass to one flavor, then the slope changes from

b1,H = 1
3 (11Nc − 2Nf ) to b1,L = 1

3(11Nc − 2(Nf − 1)) and Λ
b1,L
L = m2/3Λ

b1,H
H . Note that

we need µ,m > Λ and thus ΛL > ΛH ; this reflects the fact that, by decoupling a matter

field, the low-energy theory is more asymptotically free, and thus more strongly coupled

in the IR.

• Let’s consider the SM: the gauge group is SU(3)C × SU(2)W × U(1)Y with three

generations of chiral fermions in the (3, 2)1/3 + (3̄, 1)−4/3 + (1, 2)−1 + (1, 1)2. The Higgs

field is a complex scalar in the (1, 2)1. For U(1)Y the slope is b1 = −4
3TrDFQ

2− 1
3TrCSQ

2

so this gives −4
3
·3 · (3(1/3)2+(3/2)(−4/3)2+ 3

2
(2/3)2+ 1

2
(2)(−1)2+ 1

2
(2)2− 1

3
(2)(1)2. The

slopes for SU(3)× SU(2)× U(1)Y are then found to be (7, 196 ,−41
3 ). The three couplings

approximately, but do not quite meet at µ ∼ 1015GeV . This is some approximate evidence

for grand unification, and the fact that they miss can be modified by adding additional

matter fields at higher energy. E.g. in the MSSM get slopes (3,−1,−33/5). and better

convergence of the couplings at MGUT? ∼ 1015GeV .
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