
215c, 5/13/20 Lecture outline. c© Kenneth Intriligator 2020.

⋆ Week 7 reading: Tong chapter 2,

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

Also Coleman’s Aspect of Symmetry book, chapter on secret symmetry,

and Tong chapter 5 for SSB.

• Spontaneous symmetry breaking, aka (Coleman): secret symmetry. The symmetry

is not broken at all, but only obscured by the groundstate. E.g. a magnet, where the

Hamiltonian is rotationally invariant, but the spins align to point in some particular di-

rection, which we can choose to call ẑ. This seems to break the symmetry, e.g. the SO(3)

rotations down to the little group U(1) of rotations around the z-axis. There are two bro-

ken generators of SO(3) and the broken elements of the group live in SO(3)/SO(2) ∼= S2,

corresponding to rotating ẑ to point anywhere on the unit sphere. Spontaneous symmetry

breaking is the statement that there is a symmetry of interactions, respected by L, which is

disrespected by the groundstate, so Q|0〉 6= 0 where Q is the charge for a broken generator

(e.g. the broken rotation generators). The symmetry is actually only obscured – the tech-

nical name is “non-linearly realized” – rather than broken, in that it still has non-trivial

consequences. Among those consequences is, if a symmetry G is broken to a subgroup H,

then there are massless bosons, called Nambu-Goldstone bosons (NGBs) that live on the

space G/H, e.g. the S2 in the example above. Not only are the bosons massless – they

cannot have any potential at all: their interactions can only be via derivatives of the fields.

As a concrete class of examples, consider a theory of N real scalar fields Φi=1...N ,

with L = 1
2

∑

i ∂µΦ
i∂µΦi − A

2

∑

iΦ
iΦi − B

4
(
∑

i Φ
iΦi)2. We take B > 0, so the energy

will be bounded below. If A > 0, then the vacuum is at the origin, Φi = 0. If A < 0

then the origin is a local maximum, and the true minimum is at
∑

iΦ
iΦi = −A/B ≡ v2,

which is an SN−1. The mass matrix is M2
ij = ∂2V/∂Φi∂Φj|min = 2BΦiΦj which has one

non-zero eigenvalue and N − 1 zero eigenvalues. The global symmetry is G = SO(N) and

we can rotate the vacuum expectation value to e.g. Φi
0 = vδiN , and then the little group

of unbroken rotations is H = SO(N − 1), and G/H = SN−1 has radius v. The G/H fields

are massless because we can have arbitrarily long-wavelength fluctuations δΦi around Φi
0.

The low-energy theory is called a non-linear sigma model, with target space SN−1, and

the leading order Lagrangian is L =
∑

i ∂µΦ
i∂µΦi with the constraint

∑

i Φ
iΦi = v2; this

can also be written as L = 1
2gab(φ)∂µφ

a∂µφa, where φa ∈ SN−1 with metric gab(φ). For
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N = 4, this can be equivalently written as a theory with G = SU(2)L × SU(2)R, with

Φ̃ ≡
∑

i Φ
iσi ∈ (2, 2); then 〈Φ̃〉 = v1 breaks G→ H = SU(2)D, and G/H ∼= SU(2) ∼= S3.

• Consider the general case of a G global symmetry, which acts on the fields as

δψn = eiT
a
nαa

ψn, where α
a are constants. This leads to conserved Noether currents Jµ,a,

with ∂µJ
µ,a = 0, with conserved charge Qa =

∫

d3xJ0,a. The charges generates the G

transformation and all operators form representations, i[Qa,On] = (T a)mn Om. In the un-

broken case, a correlation function 〈
∏

i Oi(xi)〉 is only non-zero if the product of operators

gives the trivial, neutral, identity representation. The symmetry is instead spontaneously

broken if some Qa (those of some subgroup H) do not annihilate the vacuum, Qa|0〉 6= 0.

This happens iff there is some scalar operator O (it can be a composite, e.g. ψ̄ψ), with

non-zero Qa charge, [Qa,O] 6= 0, has a non-zero vacuum expectation value (vev), 〈O〉 6= 0.

SinceO is charged, O ∼ [Qa,O] so its non-zero vev is only possible ifQa does not annihilate

the vacuum. Because Qa is a symmetry of the theory, and in particular the Hamiltonian,

[H,Qa] = 0, so Qa|0〉 and |0〉 are degenerate in energy. Qa is actually non-normalizable

because of all this, but this does not affect its commutators. Let’s focus on the currents.

The statement that Qa|0〉 6= 0 means that Ja,µ|0〉 cannot be zero. Instead, it creates

a state: 〈φa(p)|Jb,µ(x)|0〉 = iδabpµfeip·x. Current conservation ∂µJ
µ requires the state

to be massless, p2 = 0. Recall from Fall that we normalized our creation operators, and

thus our states, such that, in D spacetime dimensions, 〈k′|k〉 = (2π)D(2ωk)δ
D−1(~k − ~k′),

i.e. the state 〈φ(k)| has mass dimension 1
2
(2−D). The current Jb,µ has mass dimension

D − 1, so the charge Q is dimensionless. Thus ∆(f) = 1
2(D − 2), which has the units of a

scalar field. In fact, f ∼ v is the vacuum expectation value of some scalar, which sets the

size radius of the G/H target space.

Aside: the fact that ∆(f) = 0 in D = 2 is related to the fact that scalars have log

rather than power-law correlation functions. There is a theorem (Coleman) that contin-

uous symmetries cannot be spontaneously broken in D ≤ 2 non-compact space or time

dimensions. This is analogous to the theorem mentioned earlier that symmetry breaking,

even for a discrete symmetry, is impossible in D = 1 QM. For D = 2, discrete symmetry

breaking is possible, but not continuous.

• Another way to see it: consider 〈Ja,µ(x)O(y)〉. The Ward identity (recall a HW

from Fall) says that the current is conserved in the correlator up to a contact term:

∂µx 〈J
a,µ(x)O(y)〉 = δ(x0 − y0)〈[J

0,a(x),O(y)]〉 = iδD(x − y)〈δaO(y)〉, which is non-zero

by assumption. If we Fourier transform, 〈Ja,µ(x)O(y)〉 =
∫

d4kσa(k2)θ(k0)kµe
ik(x−y), see
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that σa(k2) has to have a pole at k2 = 0: σa ∼ 〈δaO〉/k2. Such a pole is associated with

a massless particle 〈φa(k)|.

A simple and illustrative toy model, in the context of a U(1) global symmetry, is

a free massless, compact scalar φ with φ ∼ φ + 2πf . There is a shift symmetry δφ =

α, so δφ ≡ δ
δαφ = 1; because this has non-zero expectation value 〈δφ〉 = 1, the shift

symmetry is spontaneously broken. The conserved current is Jµ = f∂µφ, where f has

dimensions of energy, and indeed i[j0(~x, t), φ(~y, t)] = δ3(x− y)δφ. The current Jµ creates

the massless state |k〉 = a†(k)|0〉, with 〈k|Jµ(x)|0〉 ∼ fkµeikx. Integrating
∫

d3xJ0 in

this expectation value is peaked around ~k = 0 and the result is that the charge is non-

normalizable, ||Q|0〉||2 → ∞.

An example that reduces to the above in the IR is L = 1
2∂µΦ

∗∂µΦ − V (|Φ|) for

the case where V has a minimum for 〈Φ∗Φ〉 ≡ v2 6= 0. Take Φ = ρeiφ/f , then L →
1
2
∂µρ∂

µρ+ ρ2

2f2 ∂µφ∂
µφ−V (ρ), and we assume that the potential has a minimum at ρ = v.

The fluctuation δρ is massive, while φ is massless. The global symmetry that gives Φ a

phase shifts φ. This is called a non-linear realization of the symmetry (even though the

shift of φ is linear), because φ ∼ lnΦ. The periodicity in the phase, associated with U(1)

being compact, yields periodicity in φ.

• Let’s consider the symmetries of SU(Nc) withNf massless Dirac Fermions in the fun-

damental of SU(N). There are classical global symmetries SU(Nf )L×SU(Nf )R×U(1)V ×

U(1)A, and we will write the Fermions as ψα ∈ (Nc;Nf , 1)1,1 and ψ̃α ∈ (N̄c; 1, N̄f)−1,1,

where α = 1, 2 is the chiral Fermion spinor index; ψ† and ψ̃† are right-handed, with

spinor index α̇ = 1, 2, and in the conjugate representations. The subscripts denote the

U(1) charges. The U(1)V symmetry acts on the Dirac Fermions via jµV = Ψ̄γµΨ, and

U(1)A acts via jµA = Ψ̄γµγ5Ψ, and SU(Nf )L,R act as jµ,aSU(Nf )L,R
= Ψ̄γµT aPL,RΨ, where

PL,R = 1
2 (1∓ γ5). As we will discuss soon, U(1)A is violated by instantons, and this fact

shows up in a triangle diagram with U(1)A current insertion at one vertex, and SU(Nc)

gauge current operators inserted at the other two.

Consider the gauge and Lorentz invariant quantity ψf,c
α ψ̃g̃

c,βǫ
αβ , where the gauge in-

dices are contracted to give a gauge singlet, and the Lorentz spinor indices are contracted

to give a scalar, but the flavor indices are not contracted; suppressing the indices, this is

ψψ̃ in the (Nf , N̄f )0,2. For Nf just below the asymptotic freedom bound, the IR phase is

expected to be an interacting conformal field theory with β(α∗) = 0. For lower values of

Nf , the original theory becomes too strongly coupled in the IR to admit the CFT phase,

and instead the operator ψψ̃ gets a non-zero vev, which spontaneously breaks the global

3



symmetry G to the little group H, i.e. the subgroup that is preserved by the expectation

value. Goldstone’s theorem says that spontaneously breaking G → H leads to massless,

Nambu-Goldstone bosons, aka pions, in the coset G/H. In the present case, classically,

G = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A and H = SU(Nf )L+R≡D × U(1)V , so the

classical NGB space is G/H = SU(Nf ) × U(1)A. This led to a famous puzzle. The reso-

lution of the puzzle is that U(1)A is actually not a symmetry – it has an anomaly and is

explicitly violated by instantons. So the quantum G/H space is actually just SU(Nf ).

ended here

• This was first observed in real-world physics, which guided theorists to the un-

derstanding mentioned above. Approximate global symmetries, where the symmetry is

explicitly broken by some small amount, are also useful. The small explicit symmetry

breaking can lift the G/H degeneracy, e.g. tilting the sombrero, giving a vacuum where

the NGBs have a small mass that is related to the amount of symmetry breaking. They

are then called pseudo NGBs and this played a big role in the development of particle

physics and QFT.

The Nf = 3 light quark flavors (u, d, s) have an approximate SU(3)L×SU(3)R global

symmetry, which is respected by the su(3)c strong force but broken explicitly by the non-

zero masses, and by su(2)W ×u(1)Y and by u(1)E&M . This approximate global symmetry

is spontaneously broken by 〈ψψ̃〉 6= 0, leading to approximate NGBs in the adjoint of the

diagonal SU(3)F . There are indeed 8 light pions which fit this perfectly:









π0

√
2
+ η0

√
6

π+ K+

π− −π0

√
2
+ η0

√
6

K0

K− K̄0 −2 η0

√
6









∈ 8.

Aside: the baryons, including the proton and the neutron and others, also form SU(3)F

representations and this was the original 8-fold way of Gell-Mann, which he used to predict

the existence, and the mass, of a baryon that is now understood to be made up from three

strange quarks in the 10 of SU(3)F and with spin j = 3/2. Note that this is completely

symmetric in the SU(3)F labels and in the spin, and this fits with Fermi statistics because

it is completely antisymmetric in su(3)c to get something color neutral.

If U(1)A were a symmetry, there would have to be a 9th pseudoscalar (since it is

P odd) meson; the candidate observed particle is called the η′, but it is too massive to

be considered an approximate NGB. The resolution is that U(1)A is not a symmetry, as

already mentioned, and this gives the η′ a large mass compared to the light pions. The
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pions are not massless because the global symmetries are explicitly broken by the non-

zero quark mass terms; approximate values are mu ≈ md ≈ 0.307GeV , ms ≈ 0.490GeV ,

and approximate formulae for the meson masses from this explicit breaking would give

mη′,wrong ≈ 355MeV whereas mη′,actual ≈ 958MeV .

• The G/H space SU(Nf )D has non-trivial topology: it contains a S3 so π3(G/H) = Z

for Nf ≥ 2. For Nf ≥ 3 it also contains a S5, so π5(G/H) = Z for Nf ≥ 3. The S3 means

that there can be solitonic particle configurations, where space and the point at infinity,

are wound around the S3 target; these are called Skyrmions, and it turns out that they

have the right quantum numbers to give the baryons of the original UV theory of quarks

and gluons, now realized as solitons on the space of pions. The S5 plays a role in giving

what is known as the Wess-Zumino-Witten interaction of the low-energy theory. If there

is time, this will be discussed in the context of ’t Hooft anomaly matching.
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