$215 \mathrm{c}, 5 / 18 / 20$ Lecture outline. © Kenneth Intriligator 2020.

\star Week 8 reading: Tong chapter 5 up to WZW term.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html
Also Coleman's Aspect of Symmetry book, chapter on secret symmetry.

- Consider $s u\left(N_{c}\right)$ gauge theory with N_{f} Dirac fermions in the fundamental. Take the fermions to be massless - we will discuss adding mass terms soon. As discussed last time, we decompose the Dirac Fermions into left and right-handed pieces via $P_{L, R}=\frac{1}{2}\left(1 \pm \gamma^{5}\right)$; in the Dirac basis where $\gamma_{5}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ then $\psi^{f, c} \rightarrow\binom{\psi_{\alpha}^{f, c}}{\tilde{\psi}_{\dot{\alpha}}^{\dagger f, c}}$ where we choose to write the Fermions as both left-handed Weyl, $\psi_{\alpha}^{f, c}$ and $\tilde{\psi}_{\tilde{f}, c, \alpha}$ in the N_{c} and \bar{N}_{c}. Write the symmetry table, including the $\delta \mathcal{L}=m_{i \tilde{j}} \psi_{\alpha}^{i} \tilde{\psi}_{\beta}^{\tilde{j}} \epsilon^{\alpha \beta}+$ h.c. (note that the masses can be complex).

For $N_{f} \geq \frac{11}{2} N_{c}$, the theory is IR free and needs a UV cutoff or completion. For $N_{f} \leq N_{c}$, the theory is asymptotically free in the UV, and the gauge coupling g is relevant in the IR , flowing to stronger coupling. It can either flow to a zero of $\beta(g)$, which is believed to happen for N_{f} in the conformal window $N_{f, *}<N_{f}<\frac{11}{2} N_{c}$, or it flows to stronger coupling and something else happens. A possibility, which happens in real-world QCD , is spontaneous symmetry breaking: $\left\langle\psi_{\alpha}^{f, c} \tilde{\psi}_{\tilde{f}, d}^{\beta}\right\rangle=-\sigma \delta_{d}^{c} \delta_{\beta}^{\alpha} \delta_{\tilde{g}}^{f}$ where the usuallysuppressed indices are written out to emphasize that this vev does not break $\operatorname{su}\left(N_{c}\right)$ gauge or $S U(2)_{L}$ Lorentz symmetry, but it does break $S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U(1)_{A} \rightarrow S U\left(N_{f}\right)_{D}$. The $\sigma \sim \Lambda^{3}$. In perturbation theory, gauge field exchange between the Fermions leads to an attractive force in the channel where $N_{c} \times \bar{N}_{c} \rightarrow 1$ and a repulsive force in the channel where $N_{c} \times \bar{N}_{c} \rightarrow\left(N_{c}^{2}-1\right)$. There is also a perturbative interaction, already at tree-level and $\left.\mathcal{O} * g^{2}\right)$, where $\psi \leftrightarrow \psi+(\psi \tilde{\psi})$ and this gives some picture that the vacuum can develop a $\psi \tilde{\psi}$ condensate. We can give a Landau-Ginsberg picture where, for small g, the effective potential for the gauge and Lorentz invariant order parameter $\mathcal{O}_{\tilde{j}}^{i}=\psi^{i} \tilde{\psi}_{\tilde{j}}$ has its minimum at the origin, but for large enough g there is a phase transition (the order of the transition is an interesting question, that has been studied on the lattice) to a Mexican hat potential that leads to $\langle\mathcal{O}\rangle \neq 0$, spontaneously breaking $G \rightarrow H$. As a result, the low-energy theory contains NGBs in $G / H \cong S U\left(N_{f}\right)_{L-R}$; these are the pions, and the usual notation is to write $U(x) \in S U\left(N_{f}\right)=\exp \left(\frac{2 i}{f_{\pi}} \pi(x)\right)$ with $\pi(x) \equiv \pi^{a}(x) T^{a}$. E.g. for $S U(2)$ the π^{a} are the Euler angles, which live in a compact space and parameterize a $S^{3} \cong S U(2)$.

The broken $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ act on U as $U \rightarrow L^{\dagger} U_{R}$ and using the unbroken $S U\left(N_{f}\right)_{D}$ we can locally rotate $U \rightarrow 1$ and see that is preserved if $L=R$. Note that
$\operatorname{Tr}\left(U^{\dagger} \partial_{\mu} U\right)=0$ because the generators are traceless, and $U^{\dagger} \partial_{\mu} U=-\partial U^{\dagger} U$, so there is a unique kinetic term that respects the symmetry (called the chiral Lagrangian):

$$
\mathcal{L}_{2}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial_{\mu} U\right)=\frac{1}{2} \partial^{\mu} \pi^{a} \partial_{\mu} \pi^{a}-\frac{2}{3 f_{\pi}^{2}} \operatorname{Tr}\left(\pi^{2}(\partial \pi)^{2}-(\pi \partial \pi)^{2}\right)+\ldots
$$

This describes the massless pions, and their derivative interactions. This is the low-energy effective field theory for the spontaneously broken phase, and the theory can be treated as a LEEFT with a cutoff at $\sim f_{\pi} \sim v \sim \Lambda$. We can see how aspects of the original, microscopic theory show up in the LEEFT dual.

The $S U\left(N_{f}\right)_{D}$ global symmetry is manifest and unbroken in the LEEFT. The separate $S U\left(N_{f}\right)_{L}$ and $S U\left(N_{f}\right)_{R}$ secret symmetries act as $U \rightarrow L^{\dagger} U R$ and are thus realized as shifts of the NGBs. The $S U\left(N_{f}\right)_{L}$ current acts as $\delta_{L} U \approx-i \alpha^{a} T^{a} U \approx-\frac{1}{2} f_{\pi} \partial_{\mu} \pi^{a}$, which fits with the fact that these currents do not annihilate the vacuum but instead act on it to create the NBGs, $\left\langle\pi^{b}(p)\right| J_{L, \mu}^{a}(x)|0\rangle=i \frac{f_{\pi}}{2} \delta^{a b} p_{\mu} e^{i p x}$. Likewise $J_{R, \mu}^{a} \approx+\frac{1}{2} f_{\pi} \partial_{\mu} \pi^{a}$ so the diagonal sum is unbroken.

Parity P takes $\vec{x} \rightarrow-\vec{x}$ and thus $\gamma_{5} \rightarrow-\gamma_{5}$ and thus exchanges $L \leftrightarrow R$. It thus takes $U \rightarrow U^{*}$ so $\pi^{a} \rightarrow-\pi^{a}$. This fits with $\partial_{\mu} \pi^{a} \sim J_{L-R, \mu}^{a}$. This shows that pions transform as parity odd pseudoscalars, which fits with observation (based on which decays are allowed vs suppressed).

- If we add mass terms $\delta_{\mathcal{L}}=m_{i \tilde{j}} \psi^{i} \tilde{\psi}^{\tilde{j}}+$ h.c., we explicitly break $S U\left(N_{f}\right)_{L}$ and $S U\left(N_{f}\right)_{R}$ because the masses are in the $\left(\bar{N}_{f}, N_{f}\right)$. This shows up in the LEEFT as mass terms for the NGBs: $\delta_{\mathcal{L}}=\frac{1}{2} \sigma \operatorname{Tr} m U+$ h.c. $\rightarrow-\frac{\sigma}{f_{\pi}^{2}} \operatorname{Tr}\left(m+m^{\dagger}\right) \pi^{2}+\ldots$. Note that the mass-squared of the NGBs is proportional to the Fermion mass times the SSB vev.
- This was all first observed in real-world physics, which guided theorists to the understanding mentioned above. First came $S U(2)_{I}$ isospin, with $\binom{p}{n}$ an $I=\frac{1}{2}$ doublet and $\pi^{0}, \pi^{ \pm}$an $I=1$ triplet. We now understand this as coming from the approximate $S U(2)_{L+R}$ that rotates the lightest quark flavors: $\binom{u}{d}$ form an $I=\frac{1}{2}$ doublet. This approximate symmetry is unbroken by $S U(3)_{C}$, and the $\pi^{0}, \pi^{ \pm}$are the NGBs for $S U(2)_{L} \times$ $S U(2)_{R} \rightarrow S U(2)_{D}$. The energy scale for this breaking is matched by fitting to the observed pion interactions, which gives $f_{\pi} \approx 190 \mathrm{MeV}$ (and $\Lambda_{Q C D} \approx 300 \mathrm{MeV}$). The small quark masses (really, the Yukawa couplings to the Higgs), and also the electromagnetic and weak forces mildly explicitly break this symmetry, e.g. $m_{u} \approx 2 \mathrm{MeV}, m_{d} \approx 4.8 \mathrm{MeV}$. The masses of the three lightest pions are $m_{\pi^{0}}=135 \mathrm{MeV}$ and $m_{\pi^{ \pm}}=140 \mathrm{MeV}$. The π^{+}contains $u \bar{d}$
quarks and has a lifetime of $\sim 10^{-8} s\left(\pi^{+} \rightarrow \bar{\mu}+\nu_{\mu}\right)$, and π^{0} contains $\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})$ quarks with a lifetime of $10^{-16} s\left(\pi^{0} \rightarrow 2 \gamma\right)$.

This was then extended to the "eighfold way". The $N_{f}=3$ light quark flavors $(u, d, s)\left(m_{s} \approx 92 M e V\right)$ have an approximate $S U(3)_{L} \times S U(3)_{R}$ global symmetry, which is respected by the $\operatorname{su}(3)_{c}$ strong force but broken explicitly by the non-zero masses, and by $s u(2)_{W} \times u(1)_{Y}$ and by $u(1)_{E \& M}$. This approximate global symmetry is spontaneously broken by $\langle\psi \tilde{\psi}\rangle \neq 0$, leading to approximate NGBs in the adjoint of the diagonal $S U(3)_{F}$. There are indeed 8 light pions which fit this perfectly:

$$
\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta^{0}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & \frac{-\pi^{0}}{\sqrt{2}}+\frac{\eta^{0}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -2 \frac{\eta^{0}}{\sqrt{6}}
\end{array}\right) \in \mathbf{8}
$$

The baryons, including the proton and the neutron (which together are in the fundamental of $\left.S U(2)_{I} \supset S U(3)_{F}\right)$ and others, also form $S U(3)_{F}$ representations: the spin $j=\frac{1}{2}$ baryons are in the $\mathbf{8}$, the $j=3 / 2$ baryons are in the $\mathbf{1 0}$ of $S U(3)_{F}$. Gell-Mann and independently Ne'eman used broken approximate $S U(3)_{F}$ to predict the existence, and the mass, of a baryon that is now understood to be made up from three strange quarks in the $\mathbf{1 0}$ of $S U(3)_{F}$ and with spin $j=3 / 2$. Note that this is completely symmetric in the $S U(3)_{F}$ labels and in the spin, and this fits with Fermi statistics because it is completely antisymmetric in $s u(3)_{c}$ to get something color neutral.

- Consider general $S U\left(N_{c}\right)$ with N_{f} flavors, and the $G / H \cong S U\left(N_{f}\right)$ low-energy nonlinear sigma model. This space has non-trivial topology: it contains a S^{3} so $\pi_{3}(G / H)=\mathbf{Z}$ for $N_{f} \geq 2$. For $N_{f} \geq 3$ it also contains a S^{5}, so $\pi_{5}(G / H)=\mathbf{Z}$ for $N_{f} \geq 3$; this S^{5} (more precisely, the non-trivial H^{5} cohomology of closed mod exact 5 -forms) plays a role in giving what is known as the Wess-Zumino-Witten interaction of the low-energy theory, which is needed for several reasons, some of which will be mentioned soon. The S^{3} means that there can be solitons associated with the $\pi_{3}\left(S^{3}\right)=\mathbf{Z}$ winding number. Such solitons have $\pi^{a}(t, \vec{x})$ giving a winding map from the S^{3} of space \vec{x} (including the point at infinity) to the S^{3} where the π^{a} take values. This is similar to what we discussed with instantons, but there it was interpreted as a tunneling configuration in Euclidean spacetime, mapping S_{∞}^{3} into the gauge fields. Here the configuration is instead a particle in Minkowski spacetime, because the time coordinate of $\pi^{a}(t, \vec{x})$ is not Wick rotated or winding. Actually, the LEEFT with just \mathcal{L}_{2} does not admit stable solitons: because it is scale invariant, there is nothing to set the size of the solitons and they can reduce their energy to zero
- this property is called Derrick's theorem. The simplest way to avoid this is called the Skyrme model and the solitons are called Skyrmions: one adds higher derivative terms $\Delta \mathcal{L}=\mathcal{L}_{4}=\frac{1}{32 g^{2}} \operatorname{Tr}\left(\left[U^{\dagger} \partial_{\mu} U,^{\dagger} \partial_{\nu} U\right)^{2}\right.$ and then the solitons have a BPS bound on the energy of the soliton, $E \geq\left(6 \pi^{2} f_{\pi} / g\right)|W|$ where $|W|$ is the $\pi_{3}\left(S^{3}\right)$ winding of the soliton.

The original microscopic theory had the $U(1)_{B}$ global symmetry that acts on baryons, which are formed from $\psi^{N_{c}}$ with the color indices contracted with $\epsilon_{c_{1} \ldots c_{N_{c}}}$, and antibaryons are $\tilde{\psi}^{N_{c}}$. The extreme LEEFT does not contain the baryons, so it seems that $U(1)_{B}$ is trivial in the LEEFT. But now there is a $U(1)_{W}$ global symmetry associated with winding number. It turns out that W can be identified with baryon number B. It is a highly non-trivial and nice check that the solitons indeed have the right quantum numbers to match with the baryons. For example, since the baryon is made from N_{c} spin $\frac{1}{2}$ Fermions, contracted with an epsilon tensor in the gauge indices, it must be symmetric in the remaining $S U\left(N_{f}\right)_{D}$ and spin $S U(2)_{D}$, with $(-1)^{F}=(-1)^{N_{c}}$. The global flavor quantum numbers rely on properly quantizing the collective coordinates, including for the Fermions. It also relies heavily on the WZW term.

The chiral Lagrangian has both parity $P_{0}: \vec{x} \rightarrow-\vec{x}$ symmetry and $U \rightarrow U^{\dagger}$ symmetry, i.e. $(-1)^{N_{\pi}}$. The correct parity of the UV QCD theory is $P=P_{0}(-1)^{N_{\pi}}$. Sometimes the LEEFT has an extra symmetry, called accidental, that is not there in the underlying theory. This is not such a case. The apparent extra symmetry is an artifact of missing an interaction term, the WZW term, which separately breaks P_{0} and $(-1)^{N_{\pi}}$. It cannot be written as an integral over a 4d Lagrangian, but instead requires going to a 5 d space Y with our spacetime as its boundary, $X_{4 d}=\partial Y$. The WZW term is $S_{W Z W}=k \int_{Y} \omega_{5}$, where ω_{5} is the volume 5 -form on $G / H, \omega \sim \operatorname{Tr}\left(U^{\dagger} d U\right)^{\wedge 5}$. The 5 d action is not a total derivative, so the answer for different Y^{\prime} 's generally differs. The difference is $\int_{Y-Y^{\prime} \cong S^{5}} \omega_{5}=$ $2 \pi \pi_{5}\left(S^{4}\right) i n 2 \pi \mathbf{Z}$ since ω is normalized to give the S^{5} winding number. Then $e^{i k} \int_{Y} \omega_{5}$ is invariant under this ambiguity if $k \in Z$. Witten showed that everything works correctly, including anomaly matching and getting the right quantum numbers of the baryon from the skyrmionic soliton, if $k=N_{c}$.

- If $U(1)_{A}$ were a symmetry, there would have to be a 9 th pseudoscalar (since it is P odd) meson; the candidate observed particle is called the η^{\prime}, but it is too massive to be considered an approximate NGB. Estimates for its mass based on the quark masses suggested $m_{\eta^{\prime}, \text { wrong }} \approx 355 \mathrm{MeV}$ whereas $m_{\eta^{\prime}, \text { actual }} \approx 958 \mathrm{MeV}$. The resolution is that $U(1)_{A}$ is not a symmetry, because it has a quantum anomaly, and this gives the η^{\prime} a large mass compared to the light pions.

Before discussing anomalies in more detail, let's mention another related puzzle: the $\pi^{0} \rightarrow \gamma \gamma$ decay lifetime. The decay proceeds by an interaction term in the LEEFT that is familiar from our discussion of instantons, axions, and a previous HW exercise: $\mathcal{L} \supset$ $g \pi^{0} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$. This is consistent with the fact that π^{0} is a parity-odd pseudoscalar, but it is inconsistent with π^{0} being a true NGB: it is not really a derivative coupling (well, we can integrate by parts to write it as $\partial_{\mu} \pi^{0} K^{\mu}$ but K^{μ} is not gauge invariant). The coupling leads to a decay rate $\Gamma\left(\pi^{0} \rightarrow 2 \gamma\right)=m_{\pi}^{3} g^{2} / \pi$. A naive estimate of g is that it is generated by a loop, so $g \sim \alpha / 2 \pi F_{\pi}$. A seemingly less naive estimate is that this decay violates the chiral symmetry, which suggests that an extra factor of $m_{u}+m_{d} \sim m_{\pi}^{2}$ is needed, which should be m_{π}^{2} / m_{N}^{2}. The original estimate leads to $\Gamma_{\text {naive }} \sim 2 \times 10^{16} s^{-1}$ and the "improved" version leads to $\Gamma_{\text {less(?)naive }} \sim 4 \times 10^{16} s^{-1}$. Observation gives $\Gamma_{\text {obs }} \sim 10^{16} s^{-1}$, so approximate $U(1)_{A}$ symmetry again does not fit with observation. This was connected to the triangle diagram anomaly in 1969 by Bell and Jackiw, and Adler.

