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? Week 9 reading: Tong chapter 3 on anomalies.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Recall from last time: the wine bottle potential for a charged scalar φ =
v+h(x)√

2
eiπ(x)/fπ leads to SSB and if the vev is charged under the gauge group then the

gauge field gets a mass mA = ev from L ⊃ 1
2e

2v2(Aµ + 1
efπ

∂µπ)2 from eating the erstwhile

NGB π(x). In unitary gauge we set π = 0. The non-Abelian case is similar, as will be

illustrated with an example. As in the global case, the symmetry G is broken to a subgroup

H from the vev. The H gauge fields remain massless. The G/H gauge fields get a mass

by eating the former NGBs πa ∈ G/H.

• We can generalize the FP procedure for massive gauge fields, taking gauge fix-

ing functional F a = ∂µA
µa − ξmAπ

a. Then the tree-level propagator for the massive

gauge fields is i
p2−m2

A

(−gµν + pµpν

p2−ξm2
A

(1 − ξ))δab, the NGBs are included with propaga-

tor i
p2−ξm2

A

δab, and the ghosts with propagator i
p2−ξm2

A

δab. For ξ → ∞, the NGBs and

the ghosts are infinitely massive and decouple, and the gauge field propagator sums only

over the 3 physical polarizations; this is called unitary gauge because only physical modes

propagate. The case ξ = 1 is Feynman ’t Hooft gauge: the gauge field propagator contains

all 4 polarizations, the ghosts subtract off two, and the NGBs add back one.

• ’t Hooft proved that renormalizability works (i.e. only a finite number of counter-

terms are needed) with a massive gauge field if and only if the mass comes from spontaneous

symmetry breaking, so the existence of the massive W±µ and Zµ really required the ex-

istence of the Higgs field. An anonymous referee for Higgs’ paper pointed out that the

mechanism implies the existence of a massive scalar particle, now called the Higgs particle

H0, corresponding to the oscillations in the directions transverse to the eaten NGBs. This

particle was finally discovered at the LHC in 2011-2013 (our UCSD colleagues contributed

to that), with mass mH0 = 154.18± 0.16GeV .

• Let’s consider a non-Abelian example of spontaneous symmetry breaking with a

gauge symmetry. Consider an SU(2) (or SO(3) – it does not matter for what is said here,

though it makes a difference for some non-local observables) gauge theory with matter field

~Φ in the adjoint (the~· denotes the 3 components of the adjoint, which we can think of as a 3d

vector). Take L = − 1
4
~Fµν · ~Fµν+ 1

2
~DµΦ· ~DµΦ−V (~Φ·~Φ). Take e.g. V = − 1

2m
2~Φ2+ λ

4! (
~Φ·~Φ)2,

so the minimum has 〈|~Φ|〉 = v =
√

6m2/λ. We can use the SU(2) symmetry to rotate

~Φ to point only in 〈Φa〉 = δa,3v and the unbroken symmetry is the U(1) rotation around
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the ẑ axis. If it were not gauged, we would have G/H = SU(2)/U(1) = S2 NGBs. The

U(1) associated with A3
µ is unbroken and that gauge field is massless. The other two gauge

fields eat the πa NGBs and get mass mW = gv: L ⊃ −1
2g

2v2
∑2
a=1(Aaµ + 1

gfπ
∂µπ

a(x))2.

As with L± in angular momentum, it is convenient to introduce A±µ , with charge ±1

under the unbroken U(1). These massive gauge fields are analogous to the W± of the weak

interactions. The difference is that there SU(2)W × U(1)Y is broken to U(1)E&M by the

expectation value of a complex scalar field in the 21. Here G/H = SU(2)× U(1)/U(1) ∼=
SU(2) ∼= S3, and the 3 NGBs are eaten by W±µ and Zµ.

For energy E > mA, the UV theory is SU(2) with the adjoint matter field, while for

E < mA the IR theory consists of a photon and we can integrate out the massive W±,

so the low-energy theory is just free Maxwell theory. The fine structure constant of the

low-energy theory is obtained by matching at the scale µ = mA, so αIR = αUV (µ = mA),

where αUV (µ) is the RG running coupling constant.

• This theory contains magnetic monopoles, called ’t Hooft Polyakov monopoles. Re-

call the vortices in the Abelian Higgs theory, if the complex scalar in the vacuum has

〈|φ|〉 = v/
√

2, then with compact U(1) there are configurations where e.g. if we take

x+ iy = reiθ, then we can have φ(r →∞) = veinθ/
√

2 with n ∈ Z. To have finite energy,

we need Dµφ → 0 for r → ∞, which requires that Aµ winds around the compact U(1)

and gives a configuration with magnetic flux
∫
F/2π = n. In the SU(2) → U(1) theory,

there are magnetically charged particles rather than vortices, where the S2
∞ of space sur-

rounding the particle, for r →∞ winds around the G/H = SU(2) space of (eaten) NGBs

with π2(G/H) = Z winding number n. Again, (DµΦ)a → 0 as r → ∞ for finite energy,

and this requires Aaµ to wind around at infinity, leading to magnetic flux in the unbro-

ken U(1) ⊂ SU(2). The magnetic charge satisfies the Dirac quantization condition (it

would satisfy it even if we allowed for fundamental matter, with q = 1
2 ). Such monopoles

arise whenever a low-energy U(1) is unified into a non-Abelian group G, and is associated

with π2(G/U(1)) ∼= π1(U(1)) = Z (note that π2(G) = 0 for any group manifold G, e.g. for

G = SU(2) ∼= S3, π2(S3) = 0 because πn(Sm) = 0 whenever n < m). The winding number

of the monopole configuration is n = 1
8πv2

∫
d2Sn̂iεijkεabcφ

a∂jφ
b∂kφ

c) and the magnetic

charge is qmag = 4πn with n ∈ Z. Dirac quantization gives qelecqmag ∈ 2πZ, so qmag is

consistent with qelec ∈ 1
2Z. This fits with the fact that matter in SU(2) reps with I half-

integral, like the fundamental, have half-integer U(1) charges (like the m quantum number

in angular momentum). The configuration with n = 1 has φa = xa

r2 h(r) with h(r → 0)→ 0

(i.e. the SSB turns off in the monopole core and the theory sits at the false vacuum at
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the origin), and h(r → ∞) → vr. The energy of the monopole, and hence its rest mass,

is bounded by a BPS bound (analogous to the one that we discussed for the action of an

instanton) E ≥ 2v
g2 |qmag|. The BPS bound is saturated when Bi = 1

2εijkFjk = ±Diφ.

Analogous field configurations exist in 3 Euclidean spacetime dimensions, where they

are interpreted as instantons. Polyakov showed that such instantons lead to confinement

in 3d.

If the Standard Model SU(3)× SU(2)× U(1) is unified into SU(5) or SO(10), there

would be such magnetic monopoles, and they would have been produced in the early

universe. Inflation can explain why we do not see them.

• Next topic: anomalies of continuous symmetries (discrete symmetries can also have

interesting anomalies, will not discuss them). Let’s summarize some general results before

getting into showing how they arise in specific examples.

1. They arise only in even spacetime dimension d and from massless, chiral matter.

2. In Euclidean spacetime, they are associated with a gauge or background gauge

symmetry-violating phase of the functional integral Z[Aλ] = Z[A] exp(−2πi
∫
X
α(λ,A)),

where λ is the gauge transformation parameter and α involves an epsilon tensor (which

is why it has the i in Euclidean space, as in our discussion of the theta term in Eu-

clidean space). The anomaly thus cannot arise from real matter representations, which

is why it can only arise from massless, chiral matter.

3. They can be understood as the [dψ] measure in Z[A] =
∫

[dψ] exp( ih̄ (S[ψ]+AµJ
µ)) not

respecting the symmetry, or equivalently from det( /D) not respecting the symmetry.

4. Care is needed to see the effect, which is naively zero; it comes from the inability to

regulate a divergent quantity in a way that respects all of the symmetries. A non-

zero anomaly is an obstruction to writing down a local counter-term that removes the

effect. The result is scheme independent.

5. The anomaly arises only at one-loop, from a 1
2 (d+ 2)-gon diagram, which contributes

to a 1
2 (d+2) point function of currents. The anomaly is topological and is independent

of the coupling when the gauge fields are correctly normalized. It is also independent

of mass parameters, which again shows that it can only arise from massless fields –

for massive fields, the mass can be taken to infinity and the field then decouples.

6. The anomaly is related to index theorems (e.g. Atiyah-Singer) for the Dirac operator

in topologically non-trivial field configurations.
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7. For 4d, the anomaly involves 3 currents, which can be gauge or global, and the inter-

pretation of the anomaly differs depending on this distinction. The anomaly can be

exhibited for a single chiral Fermion, and other cases differ only in the Fermion sum,

with trace over the group theory factors, and three symmetrized generators at the ver-

tices. For U(1)aU(1)bU(1)c, the anomaly is proportional to
∑
f (qafq

b
fq
c
f ), where qaf is

the charge of Fermion f under U(1)a. For non-Abelian groupsGa replace qaf → T a(rf ),

the generator of the Ga rep rf of the Fermion, and take the symmetrized trace: the

anomaly is proportional to Tr({T a(rf ), T b(rf )}T c(rf )). An anomaly involving three

gauge fields would make the theory inconsistent (or alternatively Higgsed in the U(1)

case).
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