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? Week 10 reading: Tong chapter 3 on anomalies.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Anomalies arise only at one-loop, from a 1
2 (d+2)-gon diagram, which contributes to

a 1
2 (d+ 2) point function of currents – in 4d, it is 3-point function of currents, and arises

from a triangle diagram. The anomaly is topological and is independent of the coupling

when the gauge fields are correctly normalized. It is also independent of mass parameters,

which again shows that it can only arise from massless fields – for massive fields, the mass

can be taken to infinity and the field then decouples.

• Writing Z[A] =
∫

[dψ] exp( ih̄ (S[ψ] + AµJ
µ)), an anomaly means that Z[A] is not

gauge invariant, Z[Aλ] = Z[A] exp(−2πi
∫
X
α(λ,A)), where λ is the gauge transformation

parameter and α involves an epsilon tensor, which is why it has the i in the exponent in

either Minkowski or Euclidean space, as in our discussion of the theta term in Euclidean

space. The epsilon tensor allows the indices to be contracted without using the metric, and

the result is topological. The anomalous variation t implies that the associated Noether

current is not conserved or covariantly conserved.

• The anomaly can be understood as the statement that the path integral measure

[dψ] does not respect the symmetry.

• For a gauge symmetry, we still need to integrate
∫

[dA]/(∼)Z[A], where / means

modulo gauge transformations. The functional integral is not well defined (e.g. it inte-

grates to give zero from adding the oscillating phases) if there is a gauge anomaly. Theories

with gauge anomalies are sick, so an anomaly involving three gauge fields signals an incon-

sistency in the theory. This restricts the allowed matter content, and this can work out

non-trivially for chiral (non-vector-like) matter content, as in the Standard Model. For

vector-like matter content, (i.e. admitting mass terms for all fields compatible with the

symmetries) it is automatically true, since anomalies cannot depend on m and cannot get

contributions as m→∞. So TrGiGjGk = 0 where Gi is any gauge symmetry.

• The original example of an anomaly is TrFGG where F is a global flavor symmetry,

and G is a gauge symmetry. Such anomalies never spoil gauge invariance – we can add

counter-terms if need be to restore any apparent breaking of gauge symmetry. But they

violate the flavor symmetry F . Since F appears linearly, such anomalies are proportional

to TrTF and thus vanish for any non-Abelian flavor symmetry. They can only be non-

zero for a U(1)F flavor symmetry. For example, for SU(Nc) with Nf Dirac Fermions,
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we saw that there is a classical SU(Nf )L × SU(Nf )R × U(1)V × U(1)A flavor symmetry.

We immediately know that SU(Nf )L+R and U(1)V cannot be anomalous, because they

are vector-like. Likewise SU(Nf )L and SU(Nf )R cannot have an anomaly because their

generators are traceless. So only U(1)A can (and does) have a non-zero anomaly. The

TrU(1)FG
2 anomaly is equivalent to the statement that an instanton configuration has

Fermion zero modes. In this sense, the anomaly was first found by the mathematicians

Atiyah and Singer in their 1963 proof of their index theorem, and independently found by

Adler and Bell and Jackiw in 1969 (the relation between the two was not initially apparent,

and only understood later). The interpretation of the anomaly is that the U(1)F classical

symmetry is explicitly violated non-perturbatively, by instantons (a discrete remnant can

remain). The tell-tale sign of the violation is a one-loop diagram, and the fact that the

current cannot be modified to cancel the effect is only seen non-perturbatively, for the

same reason that the ~E · ~B term that enters in the theta angle looks like a trivial total

derivative, but has non-trivial winding in the instanton configuration. For example, U(1)A

for SU(Nc) with Nf flavors has an anomaly equal to 2Nf times the instanton density,

corresponding to the fact that an instanton has a Fermi zero mode for each ψα and ψ̃α

flavor.

• ’t Hooft pointed out in the Cargese Summer institute in 1979 that anomalies in-

volving three global symmetries are also interesting: they are an obstruction to gauging

the global symmetry. E.g. in the SU(Nc) example TrSU(Nf )3
L = −TrSU(Nf )3

R = Nc. ’t

Hooft argued essentially that such anomalies must be constant on RG flows, so if they are

non-zero then the theory cannot be gapped in the IR , and the IR massless spectrum must

match the ’t Hooft anomalies of the UV theory.

• Let’s sketch how the non-zero anomaly is computed in a characteristic example. All

examples are similar, modulo combinatoric differences and group theory factors from the

matter charge assignments, which are multiplicative factors. We will discuss two examples

in parallel: the TrU(1)AU(1)V axial anomaly in 2d, and the TrU(1)AU(1)2
V axial anomaly

in 4d. In 4d, as a simple example, consider a massless Dirac Fermion, Ψ, which can be

written as two chiral Weyl Fermions, e.g. ψα and ψ̃α. Classically we can rotate them with

separate U(1)L × U(1)R phases, with U(1)V = U(1)L−R and U(1)A = U(1)L + U(1)R;

the corresponding currents are JV,µ = Ψ̄γµΨ and JA,µ = Ψ̄γµγ5Ψ. The anomaly is

the statement that it is impossible in the quantum theory to preserve both symmetries;

we can choose to preserve U(1)V and then sacrifice U(1)A. Couple U(1)V to a gauge

field Aµ (either a dynamical one, if the symmetry is gauged, or a background source
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if it is not) and couple U(1)A to a background gauge field A5,µ. In 2d, the anomaly

is associate with ∂µJ
µ
A 6= 0 in the two-point function 〈TJµA(x)JνV (0)〉 and in 4d with

∂µJ
µ
A 6= 0 in the three-point function 〈TJµA(x)JνV (y)JρV (0)〉. With non-zero background Aµ

for U(1)V , the result can be stated as ∂µJ
µ
A,2d ∼

1
2π ε

ρσFρσ (i.e. proportional to ∗c1(F ))

and ∂µJ
µ
A,4d ∼

1
16π2 ε

ρσκλFρσFκλ ∼ ~E · ~B (i.e. proportional to ∗c2(F )).

Consider the 2d case first, with L2d = iψR(Dt + Dz)ψR + iψL(Dt − Dz)ψL, with

Dµ = ∂µ − ieAµ. The ψR,L Fermions have pz = ±E, and groundstate for Aµ = 0 consists

of the filled Dirac sea for E < 0, and unoccupied levels for E > 0. A constant external

electric field ~E = E ẑ can be applied, Az = −Et to get ∆ER,L = ±eEt: the electric field

shifts the Dirac sea up for the right movers and down for the left movers – the density of

states dpz/2π shifts as d
dtρR,L = ± eE2π . The vector density ρR + ρL is preserved, but the

axial density ρA = ρR − ρL has ρ̇A = e
2π ε

µνFµν .

Now consider the 4d case with both an electric and magnetic field. An external

magnetic field ~B = Bẑ leads to Landau levels associated with quantizing the circular

orbits, so H → p2
z + (2n+ 1)eB − 2eBSz; the density of states in the n-th Landau level is

gn = eB/2π (as seen by matching to d3p/(2π)3 in the B → 0 limit). Effectively get a 1 + 1

dimensional theory of Fermions with mass m2 = (2n+ 1)eB − 2eBSz, and this relates the

anomaly in 4d to the 2d chiral anomaly. For n = 0 and Sz = 1
2 , get m = 0 for the 2d

Fermion. For a right (left) handed chiral Fermion in 4d, this gives a 2d right (left) mover

along the ẑ axis. To get the 4d anomaly, multiply the 2d anomaly by the density of states

gn in the (x, y) plane to get ρ̇A = e2

2π2
~E · ~B = e2

16π2 ε
µνρσFµνFρσ.

• The e2 in the anomaly equation is a remnant of our normalization choice for the

gauge fields, as was highlighted earlier. For perturbative calculations, it is best to use

Apertµ , which is normalized such that Dµ = ∂µ− ieApertµ and interaction vertex then comes

with a factor of the coupling e (or g in the non-Abelian case). For conceptual clarity, it

is best to use Abestµ = eApertµ , which couples to the currents without any factors of e, and

Dµ is independent of the coupling; then the only appearance in the coupling is as a 1/e2

in front of the kinetic terms (i.e. the gauge field propagator gets a factor of e2). In this

normalization, electric charges (via Gauss’ law) are quantized to be integers, rather than

integer multiples of the coupling constant e. In this normalization, ρ̇A = 1
16π2 ε

µνρσFµνFρσ

and for comparison we had Sθ =
∫

θ
32π2 ε

µνρσFµνFρσ with θ ∼ θ + 2π multiplying the

instanton density. The factor of 2 is because we considered U(1)A gives charge +1 to both

ψα and ψ̃α – if we gave charge to only ψ or ψ̃, ρ̇ would be the instanton density on the

nose.
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• Let’s consider the anomaly from the perspective of the path integral Z[A] =∫
[dψ][dψ̄] exp(−

∫
d4xψ̄(i /D)ψ) =

∏
n λn = det(i /D), where i /Dψn = λnψn. Here Dµ =

∂µ− ieAµ, with Aµ the U(1)V gauge field, and U(1)A acts as ψ → eεγ
5

ψ and ψ̄ ≡ ψ†γ0 →
ψ̄eiεγ

5

, so det(i /D)→ det(eiεγ
5

i /Deiεγ
5

) and if not for the fact that the det involves an infi-

nite product we could use eiεγ
5

γµeiεγ
5

= γµ. The measure [dψ][dψ̄]→
∏
n dψndψ̄n and the

Jacobian is infinite and can be regulated by introducing a factor of e−λ
2
n/Λ

2

= e−(i /D)2/Λ2

and taking Λ→∞. The Jacobian is then e−2iεTr(γ5e−(i /D)2/Λ2
) where the − sign is because

it’s a Jacobian for Grassmann integration. Then use Trγ5γµγνγργσ = 4iεµνρσ (the i is

there in Euclidean space) from expanding the exponent, with /D2 = DµD
µ − 1

2 ieγ
µγνFµν .

Get Trγ5e /D2/Λ2

= i
∫
d4kE
(2π)4 e

−k2
E/Λ

2

Tr(γ5 1
2e

2εµνρσFµνFρσ
1

Λ4 + . . .) = e2

32π2 ε
µνρσFµνFρσ. So

[dψ][dψ̄]→ [dψ][dψ̄] exp(− ie2

16π2

∫
d4xε(x)εµνρσFµνFρσ).

This has the same effect as shifting the θ angle, ∆θ = −2ε. The 2 is because we

considered a theory with two Fermions, ψα and ψ̃α, both with U(1)A charge +1.

• Yet another way to understand the anomaly is by point-splitting the operator jµ5 =

limε→0 ψ̄(x+ 1
2ε)γ

µγ5 exp(−ie
∫ x+

1
2 ε

x− 1
2 ε
Aν(y)dyν)ψ(x− 1

2ε), where the charged operators are

connected by an open Wilson line. Then 〈∂µjµ5 〉 has a term where the ∂µ hits ψ̄, one where

it hits ψ, and one where it hits the Aν in the exponent. Using the EOM, this leads to

〈∂µjµ5 〉 = limε→0〈ψ̄(x + 1
2ε) exp(−ieγµενFµν(x))γ5ψ(x − 1

2ε)〉. The anomaly follows upon

taking the contraction of ψ̄(x+ 1
2ε) and ψ(x− 1

2ε) in the presence of the background gauge

field Aµ. In 2d, the term in the contraction that is independent of Aµ gives the anomaly.

In 4d, this term in the contraction is −iγαεα/2π2ε4, and multiplying by γ5 gives 0 since

Trγµγ5 = 0. Expanding to next order in the background gauge field gives

〈ψ̄(x+ ε/2)γµγ5ψ(x− ε/2)〉 =

∫
d4k

(2π)4

d4p

(2π)4
eikεe−ipxTr[γµγ5 i

(/p+ /k)
(−ie/A(p))

i

/k
].

This equals i eεκ
4π2ε2 ε

µρσκFρσ(x) in the ε → 0. Plugging into the above, and symmetrizing

in the ε→ 0 limit (eliminating the singular term in the operator product expansion when

we define the composite operator) reproduces the anomaly.
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