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? Week 10 reading: Tong chapter 3 on anomalies.

http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Recap from last time: the anomaly in 4d is associated with a breaking of the

symmetry in a current 3-point function, or equivalently a violation of current conservation

in the presence of background fields. We considered the simplest example, associated

with violation of the axial U(1)A current (associated with ψ → eiλAγ
5

ψ with Noether

current Jµ5 = ψ̄γµγ5ψ) in the presence of U(1)V gauge or background gauge currents

(ψ → eiλV ψ, with Jµ = ψ̄γµψ). The result was seen to be ∂µJ
µ
5 = 1

16π2 ε
µνρσFµνFρσ (in

the Abestµ = eApertµ normalization, or multiplied by e2 in terms of Apertµ ). The anomaly is

independent of the RG scale (in the normalization where the factor of e2 is absorbed into

the correctly normalized gauge fields. It follows from this that the anomaly is one-loop

exact (Adler Bardeen theorem), since higher loops would depend on e2(µ) and not be

RG invariant. Since the anomaly is dimensionless, it cannot depend on any masses. It is

completely robust, because it is fundamentally topological.

We obtained the result in a few different ways: (1) the physical argument based

on quantizing the Landau levels in a ~E · ~B background, and accounting for how the

electric field shifts the Dirac sea in a direction that correlates with L or R mov-

ing chirality; (2) the U(1)A non-invariance of the path integral measure, and hence

det(i /De−(i /D)2/Λ2

), where the term with Λ is to regulate the infinite product of eigen-

values and we should take Λ → ∞ at the end; (3) point splitting the Jµ5 current to

Jµ5 = limε→0 ψ̄(x+ 1
2ε)γ

µγ5 exp(−ie
∫ x+

1
2 ε

x− 1
2 ε
Aν(y)dyν)ψ(x− 1

2ε) and taking the ε→ 0 limit

appropriately. We will today discuss method (4): the original calculation of the one-loop

Feynman diagram. First, a few more comments.

• As emphasized last time, the anomaly is topological and independent of any contin-

uous parameters, in particular the coupling e, and any mass m, and it can arise only for

massless Fermions. Note that a mass term L ⊃ −mψ̄ψ explicitly violates U(1)A, but not

U(1)V , which is why the anomaly shows up in the U(1)A conservation law. The anomaly

is independent of any renormalization scheme or counterterms. If we wanted to, we could

add counterterms that restore U(1)A symmetry but they would then violate U(1)V : the

anomaly is an incompatibility in preserving both, and we choose to sacrifice U(1)A and

preserve U(1)V , which is in particular mandatory if we gauge U(1)V .
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• We saw in our discussion of the theta angle that 1
16π2 ε

µνρσFµνFρσ = ∂µK
µ, but

Kµ is not gauge invariant so the RHS of the anomaly equation is not exactly a total

derivative. If it were, we could simply redefine the current Jµ5 → Jµ5 − Kµ to get some-

thing conserved. This sort-of works in perturbation theory, but not non-perturbatively:∫
d4x 1

16π2 ε
µνρσFµνFρσ can be non-zero, recall the instanton winding number. So even

though the anomaly can be seen from a one-loop calculation, the actual charge violation

is non-perturbative.

• Let’s emphasize again the connection between the anomaly and shifting the theta

angle. Also, the sign can be a pain to get right (e.g. active vs passive view of a transfor-

mation), so let’s try to be extra careful. The U(1)A transformation is ψ → eiλAγ
5

ψ. The

path integration measure [dψ][dψ̄] picks up Jacobian J = exp(−iTrλAγ
5e−(i /D)2/Λ2

), where

the minus sign in the exponent is because Grassmann integrals pick up an inverse Jaco-

bian determinant vs regular integrals (recall the related minus sign for each Fermion loop).

The result is J = exp(− i
16π2

∫
d4xλA(x)εµνρσFµνFρσ), which has the same effect as shift-

ing the θ parameter in the path integral exp( i
32π2

∫
d4xθεµνρσFµνFρσ) by θ → θ − 2λA.

The 2 is because we could have rotated the chiral parts separately, ψα → eiλψψα and

ψ̃α → eiλψ̃ ψ̃α, and then θ → θ − λψ − λψ̃. If we rotate the Fermion by ψ → eiλAγ
5

ψ and

also shift θ → θ + 2λA, then the theory would be invariant. The broken symmetry can be

regarded as restored if we could assign U(1)A charge +2 to e−Sinst+iθ.

• Here is a bit more about the Atiyah-Singer index of the Dirac operator. If i /Dψn =

λnψn, then γ5ψn is also an eigenvector, with eigenvalue −λn. Thus ψn and γ5ψn are

orthogonal functions if λn 6= 0, so ψn cannot be an eigenstate of γ5 unless λn = 0. If

we choose to diagonalize γ5 on the space of spinors, then γ5 →
(

1 0
0 −1

)
and i /D →(

0 i /D−
i /D+ 0

)
, where /D+ acts on positive chirality spinors to give negative chirality, and

i /D− = (iD+)† does the opposite. The index is defined to be Ind(i /D) = n+−n− where n+

is the number of positive chirality solutions with λn = 0, and n− is the number of negative

chirality solutions. This can be written as Trγ5 exp−(i /D)2/Λ2

and the contributions from

non-zero eigenvalues cancel in the trace. The index of the Dirac operator is Index(i /D) =

n+ − n− =
∫
d4x∂µJ

µ
A = 1

16π2

∫
d4xεµνρσFµνFρσ = 2k.

Here k is the instanton number, which is an integer k ∈ Z. For U(1), we mentioned

that that there are not finite action instanton configurations, but when we replace U(1)V

with a non-Abelian group G, e.g. SU(Nc), then k measures the Π3(G) winding number.
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The anomaly is the statement that the instanton has chiral Fermion zero-modes. Re-

call that in Euclidean spacetime the Lorentz group becomes SU(2)L × SU(2)R and the

instanton winds say SU(2)L around in the group G (via the ’t Hooft matrices), and the

anti-instanton winds say SU(2)R. So it is not shocking that the instanton can break L↔ R

with zero modes carrying net chirality, and the anti-instanton has opposite chirality.

• Zero modes of Fermionic operators lead to zero in the path integral, by the rules of

Grassmann integration:
∫
dψ01 = 0, so if ψ0 drops out of the action, because it is a zero

mode of i /D, the instanton configuration only contributes if some operator soaks up the zero

modes. This is called the ’t Hooft operator – it is a product of Fermions, corresponding to

the zero modes in an instanton configuration, and weighted by e−Sinst+iθ. The presence of

a ψα and ψ̃α Fermi zero mode means that U(1)A is broken to Z2 by instantons, since an

instanton can lead to a chiral condensate 〈ψ̃αψα〉 = e−Sinst+iθ. Note that the LHS picks

up a phase e2iλA under the chiral rotation, and the broken symmetry would be restored if

we shifted e−Sinst+iθ in the ’t Hooft vertex by that same phase.

• The anomaly can be expressed in terms of the current 3-point function Γµνρ(x1, x2;x3) =

〈JµV (x1)JνV (x2)JρA(x3)〉, which we Fourier transformed to∫
d4x1d

4x2d
4x3e

ip1x1eip2x2eikx3Γµνρ(x1, x2;x3) = Γµνρ(p1, p2; k)(2π)4δ4(p1 + p2 + k).

It should be understood that k = −(p1 + p2) in what follows. Note that Γµνρ(p1, p2; k) =
δ

δAµ(p1)
δ

δAν(p2) 〈J
ρ(k)〉|A=0 and the anomaly is the statement that kρΓ

µνρ(p1, p2; k) 6= 0.

The one-loop contribution to the 3-point function is Γµνρ(p1, p2; k) = Fµνρ(p1, p2; k) +

F νµρ(p2, p1; k) where the two diagrams differ by exchange of the photons and

Fµνρ(p1, p2; k) = i

∫
d4q

(2π)4
Tr
(
γ5γρ(q/+ /k)−1γµ(q/− /p2)−1γνq/−1

)
(the i is from the Euclidean d4q). The general form consistent with the γ5 and also Bose

symmetry in the two photons is

Γµνρ(p1, p2) = A(p1, p2)εµνρσ(p1 − p2)σ + (B(p1, p2)(p1 − p2)µενρσκ + (exch))p1σp2κ.

We can add counterterms Lct = c1ε
µνρσA5

µAν∂ρAσ, with coefficient such that Jµ and

Jν are conserved. Power counting shows that A can have a linear divergence (an ap-

parent quadratically divergent term vanishes because εµνρσqρqσ = 0, while B is finite.

We require JµV conservation, so p1µΓµνρ = p2νΓµνρ = 0, which determines A in terms of
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B. Now consider ikρΓ
µνρ, corresponding to ∂ρJ

ρ
A in the correlation function. The two

terms, from the two diagrams, superficially cancel, if we could shift the momentum inte-

gration variable. The result has the form ikρΓµνρ =
∫

d4q
(2π)4 (Fµν(q + a) − Fµν(q)) where

aµ = pµ1 − pµ2 . Upon Taylor expanding the integrand in aµ, accounting for the degree

of divergence, and using aρ
∫

d4q
(2π)4

∂
∂qρF

µν → limq→∞
Ω4

(2π)4 q
2(a · q)Fµν(q). The upshot is

ikρΓ
µνρ = e2

2π2 ε
µνρσp1,ρp2,σ. This re-derives the anomaly ∂µJ

µ
A = e2

16π2 ε
µνρσFµνFρσ.

The anomaly is physical, and regulator and scheme independent. Another regula-

tor choice is Pauli Villars. Let Γµνρ(p1, p2; k)m denote the quantity where the mass-

less Fermion propagators are replaced with that of a Fermion of mass m; this explicitly

violates U(1)A, but we will take m → 0 in the end. The PV method is to consider

limm→0 limM→∞ Γµνρ(p1, p2; k)m − Γµνρ(p1, p2; k)M , and the divergent parts of the inte-

grals cancel and the finite part is as above.

• Consider a more general Abalian theory, with matter chiral fermions ψi of charge qGi

under some U(1)G symmetry that generalizes U(1)V . If the spectrum of charges is invariant

under qGi → −qGi , where for every ψi of charge qGi there is a paired ψ̃i of opposite charge,

then U(1)G is said to be vector-like and the chiral Fermions ψi and ψ̃i can be re-packaged

as Dirac Fermions. In that case, U(1)G is compatible with mass terms L ⊃ −mψiαψ̃iβεαβ+

h.c.. Vector-like symmetries can never have anomalies, and we will not assume U(1)G is

vector-like. The U(1)Y symmetry of the Standard Model is an example of a non-vector like

gauge symmetry. Now consider the 3-point function 〈Jµ(x1)Jν(x2)Jρ(x3)〉 and Fourier

transform it to Γµνρ(p1, p2, k) with k = −(p1 + p2), in analogy with the above 3-point

function. We require that the result be completely symmetric upon exchanging any of the

external, background photons. Imposing this condition, it turns out to be impossible in

general to have pµΓµνρ = 0, much as in the calculations above. The triangle diagram is

weighted by TrU(1)3
G =

∑
i(q

G
i )3. It obviously vanishes for any vector-like symmetry, and

it must vanish for any consistent, non-broken, U(1)G symmetry.

If there are i = 1 . . . N chiral Fermions, all massless, we can consider U(1)N sym-

metries, rotating each one separately. We could also consider U(N) symmetries that

rotate them into each other, but we want to consider the possibility that they rotate

differently, with different charges qi. The U(1)G symmetry above is gauged, so there

are U(1)N−1 symmetries remaining . Let U(1)F be some such symmetry, where ψi

has charge qFi . The corresponding current JµF has an ABJ anomaly given by ∂µJ
µ
F =

TrU(1)FU(1)2
G

1
32π2 ε

µνρσFµνFρσ, where TrU(1)FU(1)2
G =

∑
i q
F
i (qGi )2.
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• Let’s consider the U(1)A anomaly in SU(Nc) with Nf massless Dirac Fermions. As

we discussed earlier, there is an SU(Nf )L × SU(Nf )R × U(1)V × U(1)A classical global

symmetry, where we can take U(1)V to act with charge +1 on ψα and −1 on ψ̃α, and

U(1)A acts with charge +1 on both. If we are discussing SU(3)C for example, then

U(1)V = 3U(1)B where U(1)B is baryon number. There is a U(1)2
V U(1)A anomaly that

is the same as in the Abelian case, aside from a multiplicative factor of replacing the

2 → TrU(1)2
V U(1)A = 2NcNf from the NcNf indices of the Fermions that are summed

in the loop. Our interest here is instead the anomaly ∂µJ
µ
A ∼ εµνρσTrFµνFρσ involv-

ing the SU(Nc) gauge fields. It comes from the 3-point function involving one U(1)A

current and two SU(Nc) gauge currents. In terms of the triangle diagram, there is a

U(1)A current at one vertex and SU(Nc) gauge fields at the other two. Aside from

group theory factors, it is the same triangle diagram as in the Abelian case: we re-

place
∑
f q

A
f (qGf )2 →

∑
f q

A
f Tr(T arfT

b
r,f )

∑
f q

A
f T2(rf )δab. The anomaly is then ∂µJ

µ
A =

kAG2
1

32π2 ε
µνρσTr(FµνFρσ) where kAG2 = TrU(1)AG

2 =
∑
f q

A
f µ(rf ), with µ(rf ) ∝ T2(rf )

normalized to be 1 (rather than 1
2 – the factor of 1

2 is there in TrF̃F ) for the fundamental

of SU(Nc). In the present example, kASU(Nc)2 = 2Nf . This is the anomaly that explains

why there is no 9th light approximate NG boson when 〈ψ̃ψ〉 6= 0: it breaks U(1)A, but

U(1)A is already broken by the anomaly (actually, by instantons – this is ’t Hooft’s solution

of the U(1) problem). This is also the anomaly that explains why π0 → γ+γ is enhanced.

More generally, we can consider a theory with non-Abelian gauge group G, and some

flavor group F that acts on chiral Fermions. For example, we can take G = SU(Nc), with

Nf chiral matter fields ψα in the Nc, and N ′f in the N̄c. The triangle anomaly involving

3 SU(Nc) gauge fields is proportional to Nf −N ′f , so the theory is sick unless we consider

this case, which is vector-like. Chiral possibilities are e.g. SU(5) with ψα ∈ 10 and ψ̃α ∈ 5̄;

this is what a generation looks like in SU(5)GUT . The anomaly involving F and two gauge

fields has coefficient kFG2 = TrFG2 so it is only non-zero for F = U(1)F , which assigns

charge qFi to matter field ψi, which is in representation ri of G. The anomaly coefficient

is kFG2 ≡ Tr(FG2) =
∑
i q
F
i µ(ri).

The interpretation is that a G-instanton has µ(ri) Fermion zero modes for the Fermion

ψi,α, and the non-conservation of JµF is because the instanton carries total charge Tr(FG2).

• An anomalous U(1)A, ψi,α → eiq
A
i λψi,α effectively shifts the G theta angle θG →

θG − kAG2λ. Whenever such a broken symmetry is present, the upshot is that θG is

unphysical – it can be rotated away into the unobservable phases of Fermions! For example,

in the standard model the strong CP problem arises because a SU(3)C θ term leads to an
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electric dipole moment for the neutron, dn ∼ eθmq/M
2
N < 3 × 10−26ecm, which leads to

θ < 10−10. There is no issue if a quark is massless, since then we get a U(1)A symmetry

and can rotate away any θ. For quarks with mass M , the mass and the anomaly both

break U(1)A, so θ becomes physical, but we can still use the anomaly to conclude that the

physical quantity is θ̄ = θ+ arg detM , where M is the quark mass matrix. The strong CP

problem is that θ̄ ≤ 10−10 looks like a fine tuning. If we replace θ with a dynamical axion

field a(x), then instantons can generate an effective potential for the analogous ā. This

works, with minimum at ā→ 0, if the a is the Nambu-Goldstone boson of a spontaneously

broken U(1)PQ Peccei-Quinn symmetry, which has a TrU(1)PQG
2 6= 0 anomaly.

In the Standard Model SU(3)C × SU(2)W × U(1)Y , we can introduce θ terms for

each θC , θW , θY . The Standard Model Lagrangian preserves classical U(1)B and U(1)L

global symmetries, where baryon number is (nq − nq̃)/3, and lepton number only acts on

the leptons. Both are preserved by SU(3)C , and both are broken by SU(2)W ’s anomaly

/ instantons (and also U(1)Y ). The linear combination U(1)B−L is anomaly free. An

effect of the U(1)B+L anomaly, and the fact that the chiral quarks do not have mass terms

(masses arise from the Higgs Yukawa coupling) is that θ2 and θY can be rotated, with

θEM = (θY + 18θ2)/4 invariant and physical (see Tong for more on this).
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