215c, 4/1/20 Lecture outline. © Kenneth Intriligator 2020.

* Week 1 reading: Tong chapter 1, and start chapter 2. http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html

• Caution about conventions: for QED, my notation last time was $D_{\mu} = \partial_{\mu} + iqA_{\mu}$

$$\mathcal{L} \supset -\frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not\!\!D - m) \psi \supset -A_{\mu} J^{\mu}, \quad \text{with} \quad J^{\mu} = q \bar{\psi} \gamma^{\mu} \psi.$$

The gauge fields do not have canonical kinetic term. To make it canonical, we take $A_{\mu} = e\hat{A}_{\mu}$ and then $D_{\mu} = \partial_{\mu} + iqe\hat{A}_{\mu}$. I will discuss charge quantization today, and then e.g. $q \in \mathbf{Z}$ whereas e could be the charge of the electron. The EOM is $\partial_{\mu}\hat{F}^{\mu\nu} = \hat{J}^{\mu}$, where $\hat{F}^{\mu\nu} = \partial^{\mu}\hat{A}^{\nu} - \partial^{\nu}\hat{A}^{\mu}$ and $\hat{J}^{\mu} = eJ^{\mu} = eq\bar{\psi}\gamma^{\mu}\psi$; these are fairly standard conventions. But the gauge transformation has a minus sign: it's $\psi \to e^{-iq\alpha(x)}\psi$ with $A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha$.

An alternative notation is to take $A_{\mu}^{new} = -A_{\mu}^{old}$. Then the gauge transformation is $\psi \to e^{+iq\alpha(x)}\psi$ with $A_{\mu}^{new} \to A_{\mu}^{new} + \partial_{\mu}\alpha$, which looks nice, and $D_{\mu}\psi = (\partial_{\mu} - iqA_{\mu}^{new})\psi$. Then $F^{\mu\nu,new} = -F^{\mu\nu}$ and we can either redefine J^{μ} with a minus sign to get Maxwell's equations to look the same, or leave J^{μ} alone and end up with $\mathcal{L} \supset +A_{\mu}^{new}J^{\mu}$. The latter notation is often used in the context of non-Abelian gauge fields.

Another notational issue in the non-Abelian case, which I mentioned last time, is whether to take $[T^a, T^b] = if^{abc}T^c$, with the familiar *i* from the angular momentum commutation relations, or to take $T^a = iT^{a,new}$ and then $[T^{a,new}, T^{b,new}] = f^{abc}T^{c,new}$. Then the generators are e.g. anti-Hermitian, rather than Hermitian, for SU(N). I will mostly use the Hermitian generator notation.

An object ψ in the fundamental rep transforms as $\psi \to U\psi$, and an object \mathcal{O} in the adjoint rep transforms as $\mathcal{O} \to U\mathcal{O}U^{-1}$. In the Lie algebra, the adjoint is represented by $(T^a)^{bc} = -if^{abc}$ (in the notation where T^a are Hermitian). E.g. for SU(2) with $f^{abc} = \epsilon^{abc}$ this leads to the standard j = 1 matrix elements of $J^a = \hbar T^a$. (HW to check these.)

• This seems like a good time to mention the connection (also in the technical sense) with differential forms. The following is just a brief sketch, to give a flavor of how it applies in the case of gauge theories. It is useful to occasionally use this language and notation.

A function e.g. $\alpha(x)$ is called a 0-form. The differential operator d takes p forms to p + 1 forms, e.g. $d\alpha = \partial_{\mu}\alpha dx^{\mu}$ is a 1-form. One forms that can be written as d of a zero form are called *exact*, so $d\alpha$ is an example of an exact 1-form. Forms that are annihilated by d are called *closed*. Now $d^2 \equiv \partial_{\mu}\partial_{\nu}dx^{\mu} \wedge dx^{\nu} = 0$, because the wedge product of two one-forms is odd under interchange whereas the partial derivatives commute; so all exact

forms are closed. But not all closed forms are exact; closed forms modulo exact forms are called *cohomology*.

We can also write $A = A_{\mu}dx^{\mu}$ as a 1-form, and gauge invariance is the statement that physics doesn't care if we shift it by any exact 1-form. The field strength tensor can be written as a 2-form $F = F_{\mu\nu}dx^{\mu} \wedge dx^{\nu}$, where again the wedge product of two one-forms is odd under exchange, fitting with the fact that $F_{\mu\nu} = -F_{\nu\mu}$. The Maxwell's equations that state there are no magnetic charges (as far as we know, and we will consider magnetic monopoles shortly) say that F is a closed form: $dF \equiv \partial_{\lambda}F_{\mu\nu}dx^{\lambda} \wedge dx^{\mu} \wedge dx^{\nu} = 0$. We locally solve that by writing F as an exact form: F = dA, and gauge invariance of F under $A \rightarrow A + d\alpha$ follows from $d^2 = 0$. In cases with magnetic flux (e.g. a solenoid, or in the vortex strings of the Abelian Higgs model that you might have met in a HW assignment last quarter), then actually $dF \neq 0$. It is still sometimes, useful to locally write F = dA, but with an A that has something that makes it globally ill-defined or having jumps, e.g. in polar coordinates we can write $d\phi$ as something that looks like an exact 1-form, but integrating it around a closed counter that encircles the origin gives 2π rather than 0; this happens because $d\phi$ is ill-defined at the origin.

Now $F \wedge F \sim \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} vol$ where $vol = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3$ is the spacetime volume 4-form. $F \wedge F$ is a topological 4-form that can be integrated over spacetime. By contrast $F_{\mu\nu}F^{\mu\nu}vol \sim F \wedge *F$ where * is called the Hodge dual, which takes a p form to a D - p form in D dimensions (here D = 4) by contracting indices with an epsilon tensor, $*F^{\mu\nu} \equiv \tilde{F}^{\mu\nu} \equiv \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$ (which differs from $F_{\mu\nu}$ by $\vec{E} \to \vec{B}$ and $\vec{B} \to -\vec{E}$). There are some hidden factors of the metric in writing $F \wedge *F$ so it is not topological.

• There are various versions of a u(1) gauge theory that differ by global considerations. A basic issue is whether the u(1) group manifold is really a circle (compact), or the real line. If it is a circle, the charges must be rational and we can normalize things such that they are integers. If we only see quantized electric charges (as in the real world E&M), the group can be either compact or non-compact – we need more information to distinguish the two cases. If we later find an irrational electric charge, we then know that it must be the non-compact case. If instead we find a magnetic monopole, then we know that it must be the compact case: compact \rightarrow magnetic monopoles \rightarrow charge quantization. If the u(1)unifies into a non-Abelian group (we will discuss an su(2) example soon), then we know that it must be the compact case.

As a warmup and reminder of the Aharanov-Bohm effect, suppose that there is an infinitesimally thin solenoid along the \hat{z} axis, so $\vec{B} = \Phi \delta(x) \delta(y) \hat{z}$, where Φ is the magnetic

flux in the solenoid. By Stoke's law, $\oint_C \vec{A} \cdot d\vec{x} = \Phi$ if *C* circles the solenoid, and we can take e.g. $\vec{A} = (\Phi/2\pi r)\hat{\phi} = \vec{\nabla}(\Phi\phi/2\pi)$. So \vec{A} is almost pure gauge, but not quite given that ϕ is only locally defined and has a 2π jump upon encircling the \hat{z} axis.

To simplify things, suppose that a particle of charge q is restricted to live on a ring of radius r = R, which encircles the flux Φ . The Lagrangian is $L = \frac{1}{2}mR^2\dot{\phi}^2 + \frac{\theta}{2\pi}\dot{\phi}$, where $\theta \equiv q\Phi$. The last term is superficially a total derivative, and indeed it is topological because of that – e.g. it drops out of the EL equations of motion – but it is not trivial because $\phi \sim \phi + 2\pi$. Get $p_{\phi} = \partial L/\partial \dot{\phi} = mR^2 \dot{\phi} + \frac{\theta}{2\pi}$ and $H = \frac{1}{2mR^2}(p_{\phi} - \frac{\theta}{2\pi})^2$. In QM, we quantize via $p_{\phi} \rightarrow -i\partial_{\phi}$. The p_{ϕ} eigenstates are $\psi_n(\phi) = \langle \phi | n \rangle = \frac{1}{\sqrt{2\pi R}}e^{in\phi}$, with $p_{\phi} = n$. The $\psi_n(\phi)$ are energy eigenstates, with $E_n = \frac{1}{2mR^2}(n - \frac{\theta}{2\pi})^2$; note that this spectrum is invariant under $\theta \rightarrow \theta + 2\pi$. Indeed, if we try to eliminate the almost-pure-gauge \vec{A} by a gauge transformation $\vec{A} \rightarrow \vec{A} + \nabla \alpha$ with $\alpha = -\Phi \phi/2\pi$ then $\psi \rightarrow \psi' = e^{i\theta\phi/2\pi}\psi$. Under $\phi \rightarrow \phi + 2\pi$, the original ψ is invariant but $\psi' \rightarrow e^{i\theta}\psi'$. This shows that θ can affect the physics only $\theta \notin 2\pi \mathbf{Z}$, and that $\theta \sim \theta + 2\pi$. The θ here will have similarities with the θ parameter in gauge theory.

Dirac understood the above effect and argued (decades before Aharanov-Bohm), that there can be magnetic monopoles, which could be imagined as being the endpoints of fictional, Dirac string solenoids, and that the pretend string will be unobservable if the corresponding $\theta \in 2\pi \mathbb{Z}$, which is Dirac's quantization condition on electric and magnetic charges. Again, consider QM for simplicity, and since the wavefunction $\psi \sim e^{iS}$ with $S \supset -\int qA_{\mu}dx^{\mu}$ moving the particle along some path C takes $\psi \to \exp(-iq\int_{C}A_{\mu}dx^{\mu})\psi$. If the path is closed, $\psi \to \exp(iq\oint_{C}\vec{A}\cdot d\vec{x})\psi$. If there is a magnetic monopole somewhere, then $\nabla \cdot \vec{B} = q_m \delta^3(\vec{x} - \vec{x}_0)$ and we can then only locally define \vec{A} . Using Gauss' law, $\oint_{C=\partial S} \vec{A} \cdot d\vec{x} = \int_{S} \vec{B} \cdot d\vec{a}$, but there are two choices of S (e.g. for the equator we can pick the Northern or Southern hemisphere). The two choices differ by $\int_{S-S'=\partial V} \vec{B} \cdot d\vec{a} = \int_V \nabla \cdot \vec{B} dV$, so if there is a magnetic monopole inside V we get $\oint \vec{A} \cdot d\vec{x}$ is ambiguous by an additive shift of q_m . This ambiguity does not affect ψ as long as $q_e q_m \in 2\pi\hbar \mathbb{Z}$.